

 [image: pic1]

[image: Github Workflow Build cookietemple Status]
 [https://github.com/zethson/cookietemple/workflows/Build%20Cookietemple%20Package/badge.svg][image: Github Workflow Tests Status]
 [https://github.com/cookiejar/cookietemple/actions/workflows/run_tests.yml/badge.svg][image: PyPi Status]
 [https://pypi.python.org/pypi/cookietemple][image: Apache 2.0 license]
 [https://github.com/cookiejar/cookietemple/blob/master/LICENSE][image: Documentation Status]
 [https://cookietemple.readthedocs.io/en/latest/?badge=latest][image: Codecov Status]
 [https://codecov.io/gh/cookiejar/cookietemple][image: Dependabot Enabled]
 [https://flat.badgen.net/dependabot/thepracticaldev/dev.to?icon=dependabot][image: Zenodo ID]
 [https://zenodo.org/badge/latestdoi/202421008][image: Discord]
 [https://discord.gg/PYF8NUk][image: Twitter Follow]
 [https://twitter.com/cookiejarorg]
Welcome to cookietemple’s documentation!

Contents:

	cookietemple overview
	Installing

	config

	list

	info

	create

	lint

	bump-version

	sync

	warp

	upgrade

	Projects using cookietemple

	Contributing

	Authors

	Installation
	Stable release

	From sources

	Upgrading cookietemple

	Windows Installation

	Create a project
	Usage

	Flags

	Getting information about available templates
	list
	Usage

	info
	Usage

	Linting your project
	Usage

	Flags

	Linting codes
	General
	general-1

	general-2

	general-3

	general-4

	general-5

	general-6

	general-7

	cli-python
	cli-python-1

	cli-python-2

	cli-python-3

	cli-java
	cli-java-1

	cli-java-2

	lib-cpp
	lib-cpp-1

	lib-cpp-2

	web-python
	web-python-1

	web-python-2

	gui-java
	gui-java-1

	gui-java-2

	pub-thesis
	pub-thesis-1

	pub-thesis-2

	Bumping the version of an existing project
	Usage

	Flags

	Configuration

	Syncing your project
	Requirements for sync

	Usage

	Flags

	Configuring sync
	Enable/Disable sync

	Sync level

	Blacklisting files

	Packaging using warp
	Warp setup

	Usage

	Flags

	Configure cookietemple
	Usage

	Flags

	On Github personal access tokens

	Upgrade cookietemple
	Usage

	Available templates
	cli-python
	Purpose

	Design

	Included frameworks/libraries

	Usage

	FAQ
	Do I need a command line interface?

	cli-java
	Purpose

	Design

	Included frameworks/libraries

	Usage

	FAQ
	Can I use cli-java without GraalVM?

	How can I access the build artifacts?

	gui-java
	Purpose

	Design

	Included frameworks/libraries

	Usage

	FAQ

	lib-cpp
	Purpose

	Design

	Included frameworks/libraries

	Usage
	Installing

	Building the project

	Generating the documentation

	Running tests

	FAQ

	pub-thesis-latex
	Purpose

	Design

	Included frameworks/libraries

	Usage
	Building your thesis - LaTeX / PDFLaTeX
	Using latexmk (Unix/Linux/Windows)

	Using the make file (Unix/Linux)

	Shell script for PDFLaTeX (Unix/Linux)

	Using the batch file on Windows OS (PDFLaTeX)

	Building your thesis - XeLaTeX
	Using latexmk (Unix/Linux/Windows)

	Building your thesis - LuaLaTeX
	Using latexmk (Unix/Linux/Windows)

	Usage details
	Class options

	Title page

	Abstract separate

	Chapter mode

	Draft

	Choosing the fonts

	Choosing the bibliography style

	Choosing the page style

	Changing the visual style of chapter headings

	Custom settings

	Nomenclature definition

	Git hooks

	General guidelines

	web-website-python
	Purpose

	Design
	The basic setup

	The advanced setup

	Included frameworks/libraries

	Usage
	The basic template usage

	The advanced template usage

	Automatic Deployment

	FAQ

	Shared FAQ
	How do I publish my documentation?
	Read the Docs

	Github Pages

	What is Dependabot and how do I set it up?

	Release Drafter

	How do I add a new template?

	Github Support
	Overview

	Branches
	Overview

	Branch protection rules

	Github Actions
	Overview

	main_master_branch_protection workflow

	release drafter workflow

	sync_project.yml

	Secrets
	Error Handling due to failed Github repository creation

	Issue labels

	Contributing
	Types of Contributions
	Report Bugs

	Fix Bugs

	Implement Features

	Add Templates

	Write Documentation

	Submit Feedback

	Get Started!

	Pull Request Guidelines

	Tips

	Adding new templates
	Template requirements

	Step by step guide to adding new templates

	External Python based projects

	FAQ
	I need help with cookietemple. How can I get in contact with the developers?

	I am looking for a template for domain x and language y, but it does not exist yet!

	Troubleshooting

	Community
	Development Leads

	Core contributors

	Contributors

	Contributor Covenant Code of Conduct
	Our Pledge

	Our Standards

	Our Responsibilities

	Scope

	Enforcement

	Attribution

Indices and tables

	Index

	Module Index

	Search Page

 [image: pic1]

[image: Github Workflow Build cookietemple Status]
 [https://github.com/zethson/cookietemple/workflows/Build%20Cookietemple%20Package/badge.svg][image: Github Workflow Tests Status]
 [https://github.com/cookiejar/cookietemple/actions/workflows/run_tests.yml/badge.svg][image: PyPi Status]
 [https://pypi.python.org/pypi/cookietemple][image: Apache 2.0 license]
 [https://github.com/cookiejar/cookietemple/blob/master/LICENSE][image: Documentation Status]
 [https://cookietemple.readthedocs.io/en/latest/?badge=latest][image: Codecov Status]
 [https://codecov.io/gh/cookiejar/cookietemple][image: Dependabot Enabled]
 [https://flat.badgen.net/dependabot/thepracticaldev/dev.to?icon=dependabot][image: Zenodo ID]
 [https://zenodo.org/badge/latestdoi/202421008][image: Discord]
 [https://discord.gg/PYF8NUk][image: Twitter Follow]
 [https://twitter.com/cookiejarorg]A cookiecutter based project template creation tool supporting several domains and languages with advanced linting, syncing and standardized workflows to get your project kickstarted in no time.

	Documentation: https://cookietemple.readthedocs.io .

cookietemple overview

Installing

Start your journey with cookietemple by installing it via $ pip install cookietemple.

See Installation [https://cookietemple.readthedocs.io/en/latest/readme.html#installing].

config

Configure cookietemple to get started.

[image: _images/e9060905f3c0c5147598d71f85b48e659a6ac8d8.gif]

See Configuring cookietemple [https://cookietemple.readthedocs.io/en/latest/config.html]

list

List all available cookietemple templates.

[image: _images/63c2e5c7cbc3ba344c5f1de7eed6d70844d84fc3.gif]

See Listing all templates [https://cookietemple.readthedocs.io/en/latest/list_info.html#list].

info

Get detailed information on a cookietemple template.

[image: _images/aa2ad821301aafd5a0c2d9a88c1d489899a5f6fd.gif]

See Get detailed template information [https://cookietemple.readthedocs.io/en/latest/list_info.html#info].

create

Kickstart your customized project with one of cookietemple’s templates in no time.

[image: _images/3daa7ae78000df56cc186bbd227e9051c883210e.gif]

See Create a project [https://cookietemple.readthedocs.io/en/latest/create.html].

lint

Use advanced linting to ensure your project always adheres to cookietemple’s standards.

[image: _images/57bc90dcd1545ad1d5488aee5750d6d86b666217.gif]
See Linting your project [https://cookietemple.readthedocs.io/en/latest/lint.html]

bump-version

Bump your project version with many configurable options.

[image: _images/40cd971a48f7f60d29c98014b343f9c64694a198.gif]

See Bumping the version of an existing project [https://cookietemple.readthedocs.io/en/latest/bump_version.html].

sync

Sync your project with the latest cookietemple release to get the latest template features.

[image: _images/9d7c0c4518111439527ada0152ee454e0ecb6942.gif]

See Syncing a project [https://cookietemple.readthedocs.io/en/latest/sync.html].

warp

Create a self contained executable.
Currently, cookietemple does not ship any templates anymore, where this may be required.

See Warping a project [https://cookietemple.readthedocs.io/en/latest/warp.html].

upgrade

Check whether you are using the latest cookietemple version and update automatically to benefit from the latest features.

See https://cookietemple.readthedocs.io/en/latest/upgrade.html.

Projects using cookietemple

	cookietemple website [https://github.com/cookiejar/cookietemple_website]

	system-intelligence [https://github.com/mlf-core/system-intelligence]

	mlf-core [https://github.com/mlf-core/mlf-core]

Contributing

cookietemple is a huge open-source effort and highly welcomes all contributions! Join our Discord Channel [https://discord.gg/PYF8NUk].
Please read contributing [https://cookietemple.readthedocs.io/en/latest/contributing.html] to find out how you can contribute.

Authors

cookietemple was initiated and developed by Lukas Heumos (Github) [https://github.com/zethson] and Philipp Ehmele (Github) [https://github.com/Imipenem].
A full list of contributors is available on our statistics webpage [https://www.cookietemple.com/stats].

Installation

Stable release

To install cookietemple, run this command in your terminal:

$ pip install cookietemple

This is the preferred method to install cookietemple, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for cookietemple can be downloaded from the Github repo [https://github.com/cookiejardealer/cookietemple].

You can either clone the public repository:

$ git clone git://github.com/cookiejar/cookietemple

Or download the tarball [https://github.com/cookiejardealer/cookietemple/tarball/master]:

$ curl -OJL https://github.com/cookiejar/cookietemple/tarball/master

Once you have a copy of the source, you can install it with:

$ pip install .

Alternatively you can also install it using the Makefile:

$ make install

Upgrading cookietemple

Everytime cookietemple is run it will automatically check whether a newer version has been released on PyPI.
If a new version has been released you will be informed. To upgrade cookietemple either run:

$ pip install --upgrade cookietemple

or by invoking:

$ cookietemple upgrade

For more information please visit Upgrade cookietemple.

Windows Installation

Cookietemple exceeds the standard windows path length limit of 260 characters.
In order to correctly install cookietemple the registry has to be adapted.
To open the registry editor run:

$ regedit

in your command prompt or directly open it through windows search bar.

Consider backing up your current registry state as changes in the registry can always cause problems resulting in
your OS not running correctly. You can either export the complete registry by selecting File > Export … and setting
the Export Range flag to ‘All’ or choose to export only selected branches.

Next find the key ‘LongPathsEnabled’ under

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\FileSystem

and change its ‘Value Data’ from ‘0’ to ‘1’.

Click ‘OK’ and close regedit. Continue installing cookietemple.

Create a project

Creating projects from templates is the heart of cookietemple.
Our templates adhere to best practices and try to be as modern as possible. Furthermore, they try to automate tasks such as automatical dependency resolvement and installation, packaging, deployment and more.
To learn more about our templates please visit Available templates and check out your template of interest.

Usage

The creation of a new project can be invoked by

$ cookietemple create

which will guide you through the creation process of your (customized) project via prompts. If you do not have cookietemple configured yet, you will be asked to do so. For more details please visit Configure cookietemple.

The prompts follow the pattern of domain (e.g. cli, gui, …), subdomain (if applicable, e.g. website), language (e.g. Python) followed by template specific prompts (e.g. testing frameworks, …).
The project will be created at the current working directory, where cookietemple has been called.

After the project has been created, linting (see Linting your project) is automatically performed to verify that the template creation process was successful.

Finally, you will be asked whether you want to automatically push your new project to Github. Note that for this purpose you need to have cookietemple configured with a Github personal access token.
For more details about the Github support please visit Github Support.

Flags

	--domain : To directly create a template of the the corresponding domain.

	--path [CWD]: An absolute or relative path to create the template at.

All further prompts will still be asked for. Example: cli.
It is also possible to directly create a specific template using its handle

Getting information about available templates

Although, information on all cookietemple templates is provided in Available templates in our documentation, it is often times more convenient to get a quick overview from the commandline.
Hence, cookietemple provides two commands list and info, which print information on all available templates with different levels of detail.

list

cookietemple list is restricted to the short descriptions of the templates. If you want to read more about a specific (sets of) template, please use the info command.

[image: List example]

Example output of cookietemple list. Note that the content of the output is of course subject to change.

Usage

cookietemple list can be invoked via

$ cookietemple list

info

The info command should be used when the short description of a template is not sufficient and a more detailed description of a specific template is required.

[image: Info example]

Example output of cookietemple info.

Usage

Invoke cookietemple info via

$ cookietemple info <HANDLE/LANGUAGE/DOMAIN>

	HANDLE : a cookietemple template handle such as cli-python.

	DOMAIN : a domain for which cookietemple provides templates for. Example: cli.

	LANGUAGE : A programming language for which cookietemple provides templates for. Example: python.

Linting your project

Linting [https://en.wikipedia.org/wiki/Lint_(software)] is the process of statically analyzing code to find code style violations and to detect errors.
cookietemple implements a custom linting system, but depending on the template external tools linting tools may additionally be called.

cookietemple’s linting is divided into three distinct phases.

	All linting functions, which all templates share are called and the results are collected.

	Template specific linting functions are invoked and the results are appended to the results of phase 1

The linting results of the first two phases are assigned into 3 groups:

	Passed

	Passed with warning

	Failed

If any of the checks failed linting stops and returns an error code.

[image: Linting example]

Linting applied to a newly created cli-java project.

To examine the reason for a failed linting test please follow the URL. All reasons are explained in the section Linting codes.

Usage

cookietemple lint can be invoked on an existing project using

$ cookietemple lint <PATH>

	PATH [CWD]: The relative path to the project directory.

Flags

Linting codes

The following error numbers correspond to errors found during linting.
If you are not sure why a specific linting error has occured you may find more information using the respective error code.

General

general-1

File not found. This error occurs when your project does not include all of cookietemple’s files, which all templates share.

Please create the file and populate it with appropriate values. You should also critically reflect why it is missing, since
at the time of the project creation using cookietemple this file should not have been missing!

general-2

Dockerfile invalid. This error usually originates from empty Dockerfiles or missing FROM statements.

general-3

TODO string found. The origin of this error are COOKIETEMPLE TODO: or TODO COOKIETEMPLE: strings in the respective files. Usually, they point to things that should be
manually configured or require other attention. You may remove them if there is no task for you to be solved.

general-4

Cookiecutter string found. This error occurs if something went wrong at the project creation stage. After a project has been created using cookietemple
there should not be any jinja2 syntax statements left. Web development templates may pose exceptions. However, {{ *cookiecutter* }} statements
should definitely not be present anymore.

general-5

Versions not consistent. If the version of all files specified in the [bumpversion] sections defined in the qube.cfg file are not consistent,
this error may be found. Please ensure that the version is consistent! If you need to exclude specific lines from this check please consult Bumping the version of an existing project.
To prevent this error you should only increase the version of your project using cookietemple bump-version.

general-6

changelog.rst invalid. The changelog.rst file requires that every changelog section has a header with the version and the corresponding release date.
The version above another changelog section should always be greater than the section below (e.g. 1.1.0 above 1.0.0).
Every section must have the headings **Added**, **Fixed**, **Dependencies** and **Deprecated**.

general-7

cookietemple.cfg linting failed. The cookietemple.cfg plays a major role in cookietemple’s sync and bump-version functionality.

The linter ensures that following requirements are met:

1.) Every config file should have at least the following sections: bumpversion, bumpversion_files_whitelisted, bumpversion_files_blacklisted, sync_files_blacklisted, sync_level

2.) bumpversion should only contain a current_version value (the project’s current version)

3.) bumpversion_files_whitelisted should contain at least the .cookietemple.yml file in the dot_cookietemple variable

4.) sync_level should only contain a ct_sync_level value (and this value should be one of either patch, minor or major)

5.) sync_files_blacklisted should contain at least the CHANGELOG.rst file (excluding it from syncing to avoid PR updates)

6.) sync should only contain a sync_enabled value (and this value should be one of either True|true|Yes|yes|Y|y|False|false|No|no|N|n)

cli-python

cli-python-1

File not found. This error occurs when your project does not include all of cli-python’s expected files.

Please create the file and populate it with appropriate values. You should also critically reflect why it is missing, since
at the time of the project creation using cookietemple this file should not have been missing!

cli-python-2

PyPI dependency not up to date. The dependencies specified in the requirements.txt and requirements_dev.txt are not up to date.

It is up to you whether you can and want to update them.

cli-python-3

The cookietemple.cfg section called sync_files_blacklisted misses either requirements = requirements.txt, requirements_dev = requirements_dev.txt or
changelog = CHANGELOG.rst.
All are required to exclude them from syncing and interference with services like dependabot.

cli-java

cli-java-1

File not found. This error occurs when your project does not include all of cli-java’s expected files.

Please create the file and populate it with appropriate values. You should also critically reflect why it is missing, since
at the time of the project creation using cookietemple this file should not have been missing!

cli-java-2

The cookietemple.cfg section called sync_files_blacklisted misses build_gradle = gradle.build or
changelog = CHANGELOG.rst.
Both are required to exclude the gradle build file from syncing.

lib-cpp

lib-cpp-1

File not found. This error occurs when your project does not include all of lib-cpp’s expected files.

Please create the file and populate it with appropriate values. You should also critically reflect why it is missing, since
at the time of the project creation using cookietemple this file should not have been missing!

lib-cpp-2

The cookietemple.cfg section called sync_files_blacklisted misses changelog = CHANGELOG.rst.
This is required to be excluded from syncing.

web-python

web-python-1

File not found. This error occurs when your project does not include all of web-python’s expected files.

Please create the file and populate it with appropriate values. You should also critically reflect why it is missing, since
at the time of the project creation using cookietemple this file should not have been missing!

web-python-2

The cookietemple.cfg section called sync_files_blacklisted misses either requirements = requirements.txt, requirements_dev = requirements_dev.txt
or changelog = CHANGELOG.rst.
All are required to exclude them from syncing and interference with services like dependabot.

gui-java

gui-java-1

File not found. This error occurs when your project does not include all of gui-java’s expected files.

Please create the file and populate it with appropriate values. You should also critically reflect why it is missing, since
at the time of the project creation using cookietemple this file should not have been missing!

gui-java-2

The cookietemple.cfg section called sync_files_blacklisted misses pom = pom.xml or changelog = CHANGELOG.rst.
Both are required to be excluded from syncing.

pub-thesis

pub-thesis-1

File not found. This error occurs when your project does not include all of pub-thesis’s expected files.

Please create the file and populate it with appropriate values. You should also critically reflect why it is missing, since
at the time of the project creation using cookietemple this file should not have been missing!

pub-thesis-2

The cookietemple.cfg section called sync_files_blacklisted misses changelog = CHANGELOG.rst.
This is required to be excluded from syncing.

Bumping the version of an existing project

Increasing the version of an already existing project is often times a cumbersome and error prone process, since the version has to be changed in multiple places.
To facilitate this process, cookietemple provides a bump-version command, which conveniently increases the version across several files and commits them.
Additionally, bump-version inserts a new section into the changelog using the specified new version.

New Version (Date)

Added

Fixed

Dependencies

Deprecated

bump-version will verify that your new version adheres to semantic versioning [https://semver.org/] and that you are not trying to update it unreasonably.
It is for example not allowed to bump from 2.0.0 to 7.1.2, since in a normal development workflow only 2.0.1, 2.1.0 or 3.0.0 adhere to consecutive semantic versioning [https://semver.org/].
Note that SNAPSHOT versions are allowed! However, it must still follow semantic versioning [https://semver.org/].
Version 1.2.5 therefore cannot be the predecessor of 1.2.5-SNAPSHOT, but only 1.2.4.

Usage

The bump-version command follows the syntax

$ cookietemple bump-version <OPTIONS> X.X.X <PATH>

	X.X.X : The new version, where the X correspond to integers adhering to consecutive semantic versioning [https://semver.org/]. You may append -SNAPSHOT.

	PATH [CWD]: The path to the cookietemple.cfg file, which contains all locations, where the version should be increased.

[image: bump-version example]

bump-version applied to a fresh cli-python project

Flags

	--downgrade : To downgrade a version.

The changelog won’t be modified. Only use this option as a last resort if something went horribly wrong in your development process. In a normal development workflow, this should never be necessary.

	--project-version : To get the current project version.

No version bumping will be triggered. Using this flag will cancel any commands executed after and exits the program.

Configuration

All templates of cookietemple ship with a cookietemple.cfg file, which defines all files bump-version examines.

The bump-version configuration begins with the section:

[bumpversion]
current_version = 0.1.0

where the current version is defined. All files are either white- or blacklisted (see below for explanations).
An arbitrary name is followed by the path to the file: arbitrary_name = path_to_file.

Whitelisted files are listed below a [bumpversion_files_whitelisted] section, e.g.:

[bumpversion_files_whitelisted]
dot_cookietemple = .cookietemple.yml
conf_py = docs/conf.py

All files, which are whitelisted are searched for patterns matching X.X.X, which are updated to the specified new versions.
Any lines, which contain the string <<COOKIETEMPLE_NO_BUMP>> will be ignored.

If files, like Maven pom.xml files, contain many version patterns matching X.X.X, it may be a better idea to blacklist them (section [bumpversion_files_blacklisted]) and enable only specific lines to be updated:

[bumpversion_files_blacklisted]
pom = pom.xml

Analogously to whitelisted files, which allow for specific lines to be ignored, blacklisted files allow for specific lines to be forcibly updated using the string <<COOKIETEMPLE_FORCE_BUMP>>.

Note that those tags must be on the same line as the version (commonly placed in a comment), otherwise they wont work!

Syncing your project

Syncing is supposed to integrate any changes to the cookietemple templates back into your already existing project.
When cookietemple sync is invoked, cookietemple checks whether a new version of the corresponding template for the current project is available.
If so, cookietemple creates a temporary project with the most recent template and pushes it to the TEMPLATE branch.
Next, a pull request is submitted to the development branch.
Please note that the required CT_SYNC_TOKEN (see below) is automatically set and manual syncing should be avoided if possible.

The syncing process is configurable by setting the desired lower syncing boundary level and blacklisting files from syncing (see Enable/Disable sync).

Requirements for sync

For syncing to work properly, your project has to satisfy a few things:

	A Github repository with your projects code (private or public, organization or non-organization repository).

	An unmodified .cookietemple.yml file. If you modify this file, which you should never do, syncing may not be able to recreate the project with the most recent template.

	An active repository secret called CT_SYNC_TOKEN for your project’s repository containing the encrypted personal access token with at least repo scope.

	A running, unmodified workflow called sync_project.yml. Modifying this workflow should never be done and results in undefined sync behaviour.

Points 3 and 4 are only required when not syncing manually.

Usage

To sync your project manually, simply run

$ cookietemple sync [PROJECT_DIR] [PAT] [GITHUB_USERNAME]

	PROJECT_DIR [CWD] : The path to the cookietemple.cfg file.

	PAT [Configured pat] : A Github personal access token with at least the repo scope. The sync_project.yml Github workflow uses the PAT set as a Github secret.

	GITHUB_USERNAME [Configured username] : The Github username to submit a pull request from. The supplied PAT has to be associated with this username.

Flags

	--set-token : Update CT_SYNC_SECRET of your project’s repo to a new PAT. Note that the Github username and the PAT must still match for automatic syncing to work.

	check-update : Check, whether a new release of a template for an already existing project is available.

Configuring sync

Enable/Disable sync

Cookietemple aims to provide the user as much configuration as possible. So, the sync feature is optional and should also
be switched on or off. If you want to enable sync (which is the default), the sync_enable accepts the following values: True, true, Yes, yes, Y, y. To disable sync,
simply change this value into one of False, false, No, no, N, n. It can be configured in the:

[sync]
sync_enable = True

section.

Sync level

Since cookietemple strongly adheres to semantic versioning our templates do too.
Hence, it is customizable whether only major, minor or patch releases of the template should trigger cookietemple sync.
The sync level therefore specifies a lower boundary. It can be configured in the:

[sync_level]
ct_sync_level = minor

section.

Blacklisting files

Although, cookietemple only submits pull requests for files, which are part of the template, sometimes even those files should be ignored.
Examples could be any html files, which, at some point, contain only custom content and should not be synced.
When syncing, cookietemple examines the cookietemple.cfg file and ignores any file patterns (globs) (e.g. *.html) below the [sync_files_blacklisted] section.
IMPORTANT NOTE: If you would like to add some files to this section, make sure your current branch (if you are syncing manually, which is not recommended) or your default branch
has the latest blacklisted sync file section with your changes, so it will be used by the sync.

Packaging using warp

cookietemple ships with Rust binaries of Warp [https://github.com/dgiagio/warp] for the three major operating systems, Linux, MacOS and Windows.
Warp can be called when complex output scripts with dependencies should be merged into single, distributable binaries.
An example would be the output of jlink [https://docs.oracle.com/javase/9/tools/jlink.htm] applied to modular Java projects.
However, warp can also be applied to .NET Core projects, NodeJS and others, making it more flexible than e.g. the with Java 14 introduced JPackager.

[image: Warp example]

Example output of cookietemple warp applied to a (former) gui-java project. The project was first packaged using mvn javafx:jlink and then warp was applied. Please note the relative path for --exec. Note that this is not necessary for GraalVM based projects.

The resulting binary is self contained and does not have any additional dependencies. Note however, that the binaries are not cross platform. You need to compile and package on the target platform.
For more information please read the Warp README [https://github.com/dgiagio/warp].
Currently no cookietemple template requires Warp.

Warp setup

Warp for all major platforms (Linux, Windows 10+, MacOS) is already shipped with cookietemple. Hence, there is no need to install the Warp externally.
However, the first time that you invoke Warp you may be asked for your sudo/administrator password, since the Warp executable needs to be granted executable rights.
You should only be prompted once, since this setting is permanent. If you update cookietemple or reinstall, the Warp executable may be replaced and you once again need to provide it the required rights.

Usage

Invoke warp by running

$ cookietemple warp --input_dir <INPUTDIR> --exec <EXECUTABLE> --output <OUTPUT>

Flags

	input-dir: The path to the directory to package.

	--exec: A relative path from the packaged folder to the executable. Please note that the --exec operates relative to the packaged folder and may result in ‘file not found’ errors, if a wrongly relative path is given!

	--output: A path to the output directory.

Configure cookietemple

To prevent frequent prompts for information, which rarely or never changes at all such as the full name, email or Github username of the user, cookietemple uses a configuration file.
Moreover, the personal access token associated with the Github username is stored, in encrypted form, to allow for various Github functionalities, such as automatic Github repository creation or Syncing your project.
The creation of projects with cookietemple requires a configuration file. A personal access token is not required, if Github support is not used.
The configuration file is saved operating system dependent in common config file locations (~/.config/cookietemple on Unix, C:\Users\Username\AppData\Local\cookietemple\cookietemple on Windows).
Configuring cookietemple is only required once, although it is always possible to update the current configuration.

Usage

Invoke cookietemple config via

$ cookietemple config <all/general/pat>

	all : Prompt for the full name, email, Github username and Github personal access token.

	general : Only prompt for the full name, email and the Github username.

These details are required to create projects.

	pat : Solely prompts for the Github personal access token and updates it if already set.

Ensure that your Github username still matches with the new personal access token.
If not you should also update your Github username via cookietemple config general. Additionally, any of your already created projects may still feature your old token and you may therefore run into issues when attempting to push.
Hence, you must also update your remote URL [https://help.github.com/en/github/using-git/changing-a-remotes-url] for those projects!

Flags

	--view : To get your current cookietemple configuration.

The explicit value of your Github personal access token will not be printed. You will only be informed about whether it is set or not.

On Github personal access tokens

cookietemple’s Github support requires access to your Github repositories to create repositories, add issues labels and set branch protection rules.
Github manages these access rights through Personal Access Tokens (PAT).
If you are using cookietemple’s Github support for the first time cookietemple config pat will be run and you will be prompted for your Github PAT.
Please refer to the official documentation [https://help.github.com/en/github/authenticating-to-github/creating-a-personal-access-token-for-the-command-line] on how to create one.
cookietemple requires repo access and workflow. This ensures that your PAT would not even allow for the deletion of repositories.
cookietemple then encrypts the Personal Access Token, adds the encrypted token to the cookietemple_conf.cfg file and saves the key locally in a hidden place.
This is safer than Github’s official way, which recommends the usage of environment variables or Github Credentials, which both save the token in plaintext.
It is still strongly advised to secure your personal computer and not allow any foe to get access.

Upgrade cookietemple

Every time cookietemple is run it will automatically contact PyPI to check whether the locally installed version of cookietemple is the latest version available.
If a new version is available cookietemple can be trivially upgraded. Note that pip must be available in your PATH.
It is advised not to mix installations using setuptools directly and pip. If you are not a developer of cookietemple this should not concern you.

Usage

$ cookietemple upgrade

Github Support

Overview

cookietemple uses GitPython [https://gitpython.readthedocs.io/en/stable/] and PyGithub [https://pygithub.readthedocs.io/en/latest/introduction.html] to automatically create a repository, add, commit and push all files.
Moreover, issue labels, a development and a TEMPLATE branch are created. The TEMPLATE branch is required for Syncing your project to work and should not be touched manually.

Branches

Overview

git branches can be understood as diverging copies of the main line of development and facilitate parallel development.
To learn more about branches read Branches in a Nutshell [https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell] of the Pro Git Book [https://git-scm.com/book].
A simple best practice development workflow follows the pattern that the master/main branch always contains the latest released code.
It should only be touched for new releases. Code on the master/main branch must compile and be as bug free as possible.
Development takes place on the development branch. All in parallel developed features eventually make it into this branch.
The development branch should always compile, but it may contain incomplete features or known bugs.
cookietemple creates a TEMPLATE branch, which is required for Syncing your project to work and should not be touched manually.

Branch protection rules

cookietemple sets several branch protection rules, which enforce a minimum standard of best branch practices.
For more information please read about protected branches [https://help.github.com/en/github/administering-a-repository/about-protected-branches].
The following branch protection rules only apply to the master/main branch:

	Required review for pull requests: A pull request to master/main can only be merged if the code was at least reviewed by one person. If you are developing alone you can merge with your administrator powers.

	Dismiss stale pull request approvals when new commits are pushed.

Github Actions

Overview

Modern development tries to merge new features and bug fixes as soon as possible into the development branch, since big, diverging branches are more likely to lead to merge conflicts.
This practice is known as continuous integration [https://en.wikipedia.org/wiki/Continuous_integration] (CI).
Continuous integration is usually complemented with automated tests and continuous delivery (CD).
All of cookietemple’s templates feature Github Actions [https://github.com/features/actions] as main CI/CD service.
Please read the Github Actions Overview [https://github.com/features/actions] for more information.
On specific conditions (usually push events), the Github Actions workflows are triggered and executed.
The developers should ensure that all workflows always pass before merging, since they ensure that the package still builds and all tests are executed successfully.

main_master_branch_protection workflow

All templates feature main_master_branch_protection workflow.
This workflow runs everytime a PR to your projects master or main branch is created. It fails, if the PR to the master/main branch
origins from a branch that does not contain patch or release in its branch name.
If development code is written on a branch called development``and a new release of the project is to be made,
one should create a ``release branch only for this purpose and then merge it into master/main branch.
This ensures that new developments can already be merged into development, while the release is finally prepared.
The patch branch should be used for required hotfixes (checked out directly from master/main branch) because, in the meantime, there might
multiple developments going on at development branch and you dont want to interfere with them.
Pull requests against the master or main branch should not contain any SNAPSHOT versions, since they are only used for development versions.

release drafter workflow

All templates feature release-drafter workflow.
This workflow consists of two parts: Everytime a new PR is made, the workflow runs and tries autolabeling the PR either as
feature or bug. Feature PRs introduce new features if the branch name contains “feature”. Bug PRs are PRs that either have a title containing
“fix” or the branch name contains “fix”.
This Action then drafts a new release grouped by the different PR categories and include references and titles to all PRs inclduded in the new release.
One can read more about this at the Release drafter GitHub repo [https://github.com/release-drafter/release-drafter].

sync_project.yml

All templates also feature this workflow. This workflow is used for automatic syncing (if enabled) your project with the latest cookietemple template version.
The workflow is run every night, although this behavior can be customized if desired.
The workflow calls cookietemple sync, which first checks whether a new template version is available and if so it submits a pull request.
For more details please visit Syncing your project.

Secrets

Github secrets are what their name suggests: Encrypted secret values in a repository or an organisation; once they are set their value can be used for sensible data in
a project or an organisation but their raw value can never be seen again even by an administrator (but it can be updated).

Cookietemple uses a secret called CT_SYNC_TOKEN for its syncing feature. This secret is automatically created during the repo creation process, if you choose to create a GitHub repo.
The secret contains your encrypted personal access token as its value. Note that this will have no effect on how to login or any other activity in your project.
If you remove the secret or change its value (even with another personal access token of you) the syncing feature will no longer work.
In case you are creating an organisation repository, the secret will also be stored as a repository secret, only usable for your specific project.

See section below in case your Github repo creation failed during the create process.

Error Handling due to failed Github repository creation

Errors during the create process due to a failed Github repo creation may occur due to a vast amount of reasons:
Some common error sources are:

	You have no active internet connection or your firewall protects you against making calls to external APIs.

2. The Github API service or Github itself is unreachable at the moment, which can happen from time to time. In doubt, make sure to check
the Github status page [https://www.githubstatus.com/].

	A repo with the same name already exists in your account/your organisation.

	Your Github Token/Secret does not have all required permissions (all repository and workflow permissions).

Creation fails, ok: But how can I then access the full features of cookietemple?
You can try to fix the issue (or wait some time on case, for example, when Github is down) and then process to create a Github repository manually.
After this, make sure to create a secret named CT_SYNC_TOKEN with the value of your PAT for your repository. See the Github docs [https://docs.github.com/en/actions/configuring-and-managing-workflows/creating-and-storing-encrypted-secrets]
for more information on how to create a secret.

We’re planning to provide a command like cookietemple config fix-github that tries to create a Github repo, set the secret and all other stuff that is going on during the Github repository creation in the create process in a later version.

Issue labels

cookietemple’s Github support automatically creates issue labels [https://help.github.com/en/github/managing-your-work-on-github/labeling-issues-and-pull-requests].
Currently the following labels are automatically created:
1. dependabot: All templates, which include Dependabot [https://dependabot.com/] support label all Dependabot pull requests with this label.

Contributing

Contributions are welcome and greatly appreciated! Every little bit helps and credit will always be given.
If you have any questions or want to get in touch with the core team feel free to join our Discord server [https://discord.com/invite/PYF8NUk].

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/cookiejar/cookietemple/issues.

If you are reporting a bug, please:

	Use the appropriate issue template.

	Be as detailed as possible. The more time you invest into describing the bug, the more time we save solving them, effectively allowing us to improve cookietemple at a faster pace.

	Be patient. We are passionate, hard workers, but also have demanding full time jobs, which require a lot of our attention.

Fix Bugs

Look through the GitHub issues for bugs. We would appreciate it if you quickly commented on the respective issue and write that you are working on this bug, to minimize the chances of two people working on the same task.

Implement Features

Look through the GitHub issues for features. The same rule also applies to features. Please write if you’re picking up one of the feature suggestions.

Add Templates

If you’re planning to add a new template to cookietemple we highly suggest that you open an issue using the corresponding template and discuss it first with us.

Adding new templates will guide you through the process of adding new templates to cookietemple.

Please ensure that you are following all the guidelines and that your template meets the requirements.

Write Documentation

cookietemple could always use more documentation, whether as part of the official cookietemple docs, in docstrings, or even on the web in blog posts, articles, and such.

Submit Feedback

The best way to send feedback is to file an issue here [https://github.com/cookiejardealer/cookietemple/issues] .

If you are proposing a feature:

	Use the appropriate GitHub issue

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions are welcome :)

Get Started!

Ready to contribute? Here’s how to set up cookietemple for local development.

	Fork the cookietemple repo on GitHub.

	Clone your fork locally

$ git clone git@github.com:your_name_here/cookietemple.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development

$ mkvirtualenv cookietemple
$ cd cookietemple/
$ python setup.py develop

	Create a branch for local development

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox

$ flake8 cookietemple tests
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	
If the pull request adds functionality, the docs should be updated.

Put your new functionality into a function with a docstring, and add the feature to the list in README.rst, if it is a major feature.

	The pull request should work for Python 3.7+ and for PyPy. Check your pull request on Github and verify that all checks and GitHub workflows are passing!

Tips

To run a subset of tests:

.. code-block:: console

$ py.test tests/something

Adding new templates

Adding new templates is one of the major improvements and community contributions to cookietemple, which is why we are dedicating a whole section to it.
Please note that creating new templates is a time consuming task. So be prepared to invest a few hours to bring a new template to life.
The integration into cookietemple however, is straightforward if you follow the guide below.
Due to the tight coupling of our templates with all cookietemple commands such as create, list, info, lint and bump-version,
new templates require the modification of several files.

cookietemple uses cookiecutter [https://cookiecutter.readthedocs.io/en/1.7.2/] to create all templates.
You need to familiarize yourself beforehand with cookiecutter to able to write templates, but don’t worry, it’s pretty easy and you usually get by with very few cookiecutter variables.
You can start with your very first cookiecutter template [https://cookiecutter.readthedocs.io/en/1.7.2/first_steps.html] and then simply see how the other existing cookietemple templates are made and copy what you need.

The following sections will line out the requirements for new templates and guide you through the process of adding new templates step by step.
Nevertheless, we strongly encourage you to discuss your proposed template first with us in public via a Github issue.

Template requirements

To keep the standard of our templates high we enforce several standards, to which all templates must adhere.
Exceptions, where applicable, but they would have to be discussed beforehand. Hence, the term should.

	New templates must be novel.
We do not want a second cli-python template, but you are of course always invited to improve it. A new commandline library does not warrant an additional template, but rather modifications of the existing template with cookiecutter if statements.
However, distinct modifications of already existing templates may be eligible. An example would be to add a GUI template for a language, which does not yet have a GUI template.
Templates for domains, which we do not yet cover or additional languages to already existing domains are of course more than welcome.

	All templates should be cutting edge and not be based on technical debt or obscure requirements. Our target audience are enthusiastic open source contributors and not decades old companies stuck with Python 2.7.

	All templates should build as automatically as possible and download all dependencies without manual intervention.

	All templates must have a testing and possibly mocking framework included.

	All templates must provide a readthedocs setup, a README.rst, usage.rst and installation.rst file, a LICENSE, Github issue and pull request templates and a .gitignore file. Moreover, a .dependabot configuration should be present if applicable.
Note that most of these are already included in our common_files and do not need to be rewritten. More on that below.

	All templates must provide a Makefile, which wraps heavily used commands to unify common operations such as installing, testing or distributing a project.

	All templates should have a Dockerfile, which provides an entrypoint for the project.

	All templates must implement all required functionality to allow the application of all commands mentioned above to them, which includes a cookietemple.cfg file, the template being in the available_templates.yml and more.

	All templates must have Github workflows, which at least build the documentation and the project.

	Every template must also have a workflow inside cookietemple, which creates a project from the template with dummy values.

	Your template must support Linux and MacOS. Windows support is optional, but strongly encouraged.

Again, we strongly suggest that new templates are discussed with the core team first.

Step by step guide to adding new templates

Let’s assume that we are planning to add a new commandline Brainfuck [https://en.wikipedia.org/wiki/Brainfuck] template to cookietemple.
We discussed our design at length with the core team and they approved our plan. For the sake of this tutorial we assume that the path / always points to /cookietemple.
Hence, at this level we see cookietemple_cli.py and a folder per CLI command.

	Let’s add our brainfuck template information to /create/templates/available_templates.yml below the cli section.

1cli:
2 brainfuck:
3 name: Brainfuck Commandline Tool
4 handle: cli-brainfuck
5 version: 0.0.1
6 available libraries: none
7 short description: Brainfuck Commandline tool with ANSI coloring
8 long description: Amazing brainfuck tool, which can even show pretty unicorns in the console.
9 Due to ANSI coloring support they can even be pink! Please someone send help.

	
Next, we add our brainfuck template to /create/templates

Note that it should adhere to the standards mentioned above and include all required files. Don’t forget to add a cookietemple.cfg file to facilitate bump-version. See Configuration for details.
It is mandatory to name the top level folder {{ cookiecutter.project_slug }}, which ensures that the project after creation will have a proper name.
Furthermore, the cookiecutter.json file should have at least the following variables:

1{
2"full_name": "Homer Simpson",
3"email": "homer.simpson@posteo.net",
4"project_name": "sample-cli",
5"project_slug": "sample-cli",
6"version": "1.0.0",
7"project_short_description": "Command-line utility to...",
8"github_username": "homer_github"
9}

The file tree of the template should resemble

 1├── cookiecutter.json
 2└── {{ cookiecutter.project_slug }}
 3 ├── docs
 4 │ ├── installation.rst
 5 │ └── usage.rst
 6 ├── .github
 7 │ └── workflows
 8 │ └── build_brainfuck.yml
 9 ├── hello.bf
10 ├── cookietemple.cfg
11 └── README.rst

	
Now it is time to subclass the TemplateCreator to implement all required functions to create our template!

Let’s edit /create/domains/cli_creator.py. Note that for new domains you would simply create a new file called DomainCreator.

In this case we suggest to simply copy the code of an existing Creator and adapt it to the new domain. Your new domain may make use of other creation functions instead of create_template_without_subdomain, if they for example contain subdomains. You can examine create/TemplatorCreator.py to see what’s available. You may also remove functions such as the creation of common files.

If we have any brainfuck specific cookiecutter variables that we need to populate, we may add them to the TemplateStructCli.

Our brainfuck templates does not have them, so we just leave it as is.

For the next step we simply go through the CliCreator class and add our brainfuck template where required. Moreover, we implement a cli_brainfuck_options function, which we use to prompt for template specific cookiecutter variables.

Assuming cli_creator.py already contains a cli-java template

 1@dataclass
 2class TemplateStructCli(CookietempleTemplateStruct):
 3 """
 4 Intended Use: This class holds all attributes specific for CLI projects
 5 """
 6
 7 """______JAVA______"""
 8 main_class_prefix: str = ''
 9
10 """____BRAINFUCK___"""
11
12
13class CliCreator(TemplateCreator):
14
15 def __init__(self):
16 self.cli_struct = TemplateStructCli(domain='cli')
17 super().__init__(self.cli_struct)
18 self.WD = os.path.dirname(__file__)
19 self.WD_Path = Path(self.WD)
20 self.TEMPLATES_CLI_PATH = f'{self.WD_Path.parent}/templates/cli'
21
22 '"" TEMPLATE VERSIONS ""'
23 self.CLI_JAVA_TEMPLATE_VERSION = super().load_version('cli-java')
24 self.CLI_BRAINFUCK_TEMPLATE_VERSION = super().load_version('cli-brainfuck')
25
26 def create_template(self, path: Path, dot_cookietemple: dict or None):
27 """
28 Handles the CLI domain. Prompts the user for the language, general and domain specific options.
29 """
30
31 self.cli_struct.language = cookietemple_questionary_or_dot_cookietemple(function='select',
32 question='Choose the project\'s primary language',
33 choices=['python', 'java', 'brainfuck'],
34 default='python',
35 dot_cookietemple=dot_cookietemple,
36 to_get_property='language')
37
38 # prompt the user to fetch general template configurations
39 super().prompt_general_template_configuration(dot_cookietemple)
40
41 # switch case statement to prompt the user to fetch template specific configurations
42 switcher = {
43 'java': self.cli_java_options,
44 'brainfuck': self.cli_brainfuck_options
45 }
46 switcher.get(self.cli_struct.language)(dot_cookietemple)
47
48 self.cli_struct.is_github_repo, \
49 self.cli_struct.is_repo_private, \
50 self.cli_struct.is_github_orga, \
51 self.cli_struct.github_orga \
52 = prompt_github_repo(dot_cookietemple)
53
54 if self.cli_struct.is_github_orga:
55 self.cli_struct.github_username = self.cli_struct.github_orga
56
57 # create the chosen and configured template
58 super().create_template_without_subdomain(f'{self.TEMPLATES_CLI_PATH}')
59
60 # switch case statement to fetch the template version
61 switcher_version = {
62 'java': self.CLI_JAVA_TEMPLATE_VERSION,
63 'brainfuck': self.CLI_BRAINFUCK_TEMPLATE_VERSION
64 }
65 self.cli_struct.template_version, self.cli_struct.template_handle = switcher_version.get(
66 self.cli_struct.language.lower()), f'cli-{self.cli_struct.language.lower()}'
67
68 super().process_common_operations(path=Path(path).resolve(), domain='cli', language=self.cli_struct.language, dot_cookietemple=dot_cookietemple)
69
70 def cli_python_options(self, dot_cookietemple: dict or None):
71 """ Prompts for cli-python specific options and saves them into the CookietempleTemplateStruct """
72 self.cli_struct.command_line_interface = cookietemple_questionary_or_dot_cookietemple(function='select',
73 question='Choose a command line library',
74 choices=['Click', 'Argparse', 'No command-line interface'],
75 default='Click',
76 dot_cookietemple=dot_cookietemple,
77 to_get_property='command_line_interface')
78 [...]
79
80 def cli_java_options(self, dot_cookietemple: dict or None) -> None:
81 """ Prompts for cli-java specific options and saves them into the CookietempleTemplateStruct """
82 [...]
83
84 def cli_brainfuck_options(self):
85 """ Prompts for cli-brainfuck specific options and saves them into the CookietempleTemplateStruct """
86 pass

	
If a new template were added we would also have to import our new Creator in create/create.py and add the new domain to the domain prompt and the switcher.

However, in this case we can simply skip this step, since cli is already included.

 1def choose_domain(domain: str):
 2 """
 3 Prompts the user for the template domain.
 4 Creates the .cookietemple file.
 5 Prompts the user whether or not to create a Github repository
 6 :param domain: Template domain
 7 """
 8 if not domain:
 9 domain = click.prompt('Choose between the following domains',
10 type=click.Choice(['cli', 'gui', 'web', 'pub']))
11
12 switcher = {
13 'cli': CliCreator,
14 'web': WebCreator,
15 'gui': GuiCreator,
16 'pub': PubCreator
17 }
18
19 creator_obj = switcher.get(domain.lower())()
20 creator_obj.create_template()

	
Linting is up next! We need to ensure that our brainfuck template always adheres to the highest standards! Let’s edit lint/domains/cli.py.

We need to add a new class, which inherits from TemplateLinter and add our linting functions to it.

 1class CliBrainfuckLint(TemplateLinter, metaclass=GetLintingFunctionsMeta):
 2 def __init__(self, path):
 3 super().__init__(path)
 4
 5 def lint(self):
 6 super().lint_project(self, self.methods)
 7
 8 def check_sync_section(self) -> bool:
 9 """
10 Check the sync_files_blacklisted section containing every required file!
11 """
12 config_linter = ConfigLinter(f'{self.path}/cookietemple.cfg', self)
13 result = config_linter.check_section(section_items=config_linter.parser.items('sync_files_blacklisted'), section_name='sync_files_blacklisted',
14 main_linter=self, blacklisted_sync_files=[[('changelog', 'CHANGELOG.rst')], -1],
15 error_code='cli-brainfuck-2', is_sublinter_calling=True)
16 if result:
17 self.passed.append(('cli-brainfuck-2', 'All required sync blacklisted files are configured!'))
18 else:
19 self.failed.append(('cli-brainfuck-2', 'Blacklisted sync files section misses some required files!'))
20 return result
21
22 def brainfuck_files_exist(self) -> None:
23 """
24 Checks a given pipeline directory for required files.
25 Iterates through the templates's directory content and checkmarks files for presence.
26 Files that **must** be present::
27 'hello.bf',
28 Files that *should* be present::
29 '.github/workflows/build_brainfuck.yml',
30 Files that *must not* be present::
31 none
32 Files that *should not* be present::
33 none
34 """
35
36 # NB: Should all be files, not directories
37 # List of lists. Passes if any of the files in the sublist are found.
38 files_fail = [
39 ['hello.bf'],
40]
41 files_warn = [
42 [os.path.join('.github', 'workflows', 'build_brainfuck.yml')],
43]
44
45 # List of strings. Fails / warns if any of the strings exist.
46 files_fail_ifexists = [
47
48]
49 files_warn_ifexists = [
50
51]
52
53 files_exist_linting(self, files_fail, files_fail_ifexists, files_warn, files_warn_ifexists)

We need to ensure that our new linting function is found when linting is applied. Therefore, we turn our eyes to lint/lint.py, import our CliBrainfuckLinter and add it to the switcher.

 1from cookietemple.lint.domains.cli import CliBrainfuckLint
 2
 3switcher = {
 4 'cli-python': CliPythonLint,
 5 'cli-java': CliJavaLint,
 6 'cli-brainfuck': CliBrainfuckLint,
 7 'web-website-python': WebWebsitePythonLint,
 8 'gui-java': GuiJavaLint,
 9 'pub-thesis-latex': PubLatexLint
10}

Our shiny new CliBrainfuckLinter is now ready for action!

	
The only thing left to do now is to add a new Github Actions workflow for our template. Let’s go one level up in the folder tree and create .github/workflows/create_cli_brainfuck.yml.

We want to ensure that if we change something in our template, that it still builds!

 1name: Create cli-brainfuck Template
 2
 3on: [push]
 4
 5jobs:
 6 build:
 7
 8 runs-on: ubuntu-latest
 9 strategy:
10 matrix:
11 python: [3.8, 3.9]
12
13 steps:
14 - uses: actions/checkout@v2
15 name: Check out source-code repository
16
17 - name: Setup Python
18 uses: actions/setup-python@v2.2.2
19 with:
20 python-version: ${{ matrix.python }}
21
22 - name: Install Poetry
23 run: |
24 pip install poetry
25
26 - name: Build cookietemple
27 run: |
28 make install
29
30 - name: Create cli-brainfuck Template
31 run: |
32 echo -e "cli\nbrainfuck\nHomer\nhomer.simpson@hotmail.com\nExplodingSpringfield\ndescription\nhomergithub\nn" | poetry run cookietemple create
33
34 - name: Build Package
35 uses: fabasoad/setup-brainfuck-action@master
36 with:
37 version: 0.1.dev1
38 - name: Hello World
39 run: |
40 brainfucky --file ExplodingSpringfield/hello.bf

We were pleasently surprised to see that someone already made a Github Action for brainfuck.

	
Finally, we add some documentation to /docs/available_templates.rst and explain the purpose, design and frameworks/libraries.

That’s it! We should now be able to try out your new template using cookietemple create
The template should be creatable, it should automatically lint after the creation and Github support should be enabled as well! If we run cookietemple list
Our new template should show up as well!
I’m sure that you noticed that there’s not actually a brainfuck template in cookietemple (yet!).

To quote our mighty Math professors: ‘We’ll leave this as an exercise to the reader.’

External Python based projects

To use cookietemple in an external Python based project

import cookietemple

FAQ

cookietemple is compound software and due to its complex nature many questions may arise.
This section serves as a collection of frequently asked questions.
If you do not find your answer here you may always join our Discord channel [https://discord.gg/PYF8NUk] and ask for help.
We are happy to include your question here afterwards.

I need help with cookietemple. How can I get in contact with the developers?

You can open an issue [https://github.com/cookiejar/cookietemple/issues] or join our Discord channel [https://discord.gg/PYF8NUk].

I am looking for a template for domain x and language y, but it does not exist yet!

We are always looking to add new templates to cookietemple. Please open an issue [https://github.com/cookiejar/cookietemple/issues] or join our Discord channel [https://discord.gg/PYF8NUk].
Even better if you already have a draft for the template and/or could add it yourself!

Troubleshooting

All currently known issues can be found on our Github issue tracker. If there are any major known issues they will be listed here.

Community

cookietemple is a huge community effort and can only be build with the combined expertise of people from all over the world.

No one knows all languages and ecosystems perfectly and we therefore want to invite everyone to join and contribute to cookietemple.

Please join our Discord Channel [https://discord.gg/PYF8NUk] to discuss all things cookietemple and get help.

Please visit Contributing to learn how you can help and improve cookietemple! The easiest way is to spread the word.

Development Leads

	Lukas Heumos (@zethson Github [https://github.com/zethson/], @Lukas Heumos Twitter [https://twitter.com/LukasHeumos])

	Philipp Ehmele (@imipenem Github [https://github.com/imipenem], @Philipp Ehmele Twitter [https://twitter.com/Farwent_])

Core contributors

None yet. Why not be the first?

Contributors

	Filip Dutescu (@filipdutescu Github [https://github.com/filipdutescu]) (C++ template and more)

	Tobias Langes (@adlanto Github [https://github.com/adlanto]) (Windows support)

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, sex characteristics, gender identity and
expression, level of experience, education, socio-economic status, nationality,
personal appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Maintainers are responsible for clarifying the standards of acceptable behavior
and are expected to take appropriate and fair corrective action in response to
any instances of unacceptable behavior.

Maintainers have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct, or to ban temporarily or permanently any
contributor for other behaviors that they deem inappropriate, threatening,
offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may
be reported by opening an issue. The project team
will review and investigate all complaints, and will respond in a way
that it deems appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an
incident. Further details of specific enforcement policies may be posted
separately.

Project maintainers who do not follow or enforce the Code of Conduct in
good faith may face temporary or permanent repercussions as determined
by other members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 1.4,
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html

Index

 _images/57bc90dcd1545ad1d5488aee5750d6d86b666217.gif
thelichking@AnotherTuringMachine:~/Desktop/Exploding Springfields i

_images/5cb1d3dacf755ebce1068e021fb909553df91f09.png
ZooKIE

_images/3daa7ae78000df56cc186bbd227e9051c883210e.gif
thelichking@AnotherTuringMachine:~/Desktop$ |

_images/40cd971a48f7f60d29c98014b343f9c64694a198.gif
thelichking@AnotherTuringMachine:~/Desktop/Exploding_springfields I

_images/9d7c0c4518111439527ada0152ee454e0ecb6942.gif

_images/63c2e5c7cbc3ba344c5f1de7eed6d70844d84fc3.gif
thelichking@AnotherTuringMachine:~/pesktop$ |

