

 [image: pic1]

[image: Github Workflow Build cookietemple Status]
 [https://github.com/zethson/cookietemple/workflows/Build%20Cookietemple%20Package/badge.svg][image: Github Workflow Tests Status]
 [https://github.com/cookiejar/cookietemple/actions/workflows/run_tests.yml/badge.svg][image: PyPi Status]
 [https://pypi.python.org/pypi/cookietemple][image: Apache 2.0 license]
 [https://github.com/cookiejar/cookietemple/blob/master/LICENSE][image: Documentation Status]
 [https://cookietemple.readthedocs.io/en/latest/?badge=latest][image: Codecov Status]
 [https://codecov.io/gh/cookiejar/cookietemple][image: Dependabot Enabled]
 [https://flat.badgen.net/dependabot/thepracticaldev/dev.to?icon=dependabot][image: Zenodo ID]
 [https://zenodo.org/badge/latestdoi/202421008][image: Discord]
 [https://discord.gg/PYF8NUk][image: Twitter Follow]
 [https://twitter.com/cookiejarorg]
Welcome to cookietemple’s documentation!

Contents:

	cookietemple overview
	Installing

	config

	list

	info

	create

	lint

	bump-version

	sync

	warp

	upgrade

	Projects using cookietemple

	Contributing

	Authors

	Installation
	Stable release

	From sources

	Upgrading cookietemple

	Windows Installation

	Create a project
	Usage

	Flags

	Getting information about available templates
	list
	Usage

	info
	Usage

	Linting your project
	Usage

	Flags

	Linting codes
	General
	general-1

	general-2

	general-3

	general-4

	general-5

	general-6

	general-7

	cli-python
	cli-python-1

	cli-python-2

	cli-python-3

	cli-java
	cli-java-1

	cli-java-2

	lib-cpp
	lib-cpp-1

	lib-cpp-2

	web-python
	web-python-1

	web-python-2

	gui-java
	gui-java-1

	gui-java-2

	pub-thesis
	pub-thesis-1

	pub-thesis-2

	Bumping the version of an existing project
	Usage

	Flags

	Configuration

	Syncing your project
	Requirements for sync

	Usage

	Flags

	Configuring sync
	Enable/Disable sync

	Sync level

	Blacklisting files

	Packaging using warp
	Warp setup

	Usage

	Flags

	Configure cookietemple
	Usage

	Flags

	On Github personal access tokens

	Upgrade cookietemple
	Usage

	Available templates
	cli-python
	Purpose

	Design

	Included frameworks/libraries

	Usage

	FAQ
	Do I need a command line interface?

	flake8 and darglint are very slow

	cli-java
	Purpose

	Design

	Included frameworks/libraries

	Usage

	FAQ
	Can I use cli-java without GraalVM?

	How can I access the build artifacts?

	gui-java
	Purpose

	Design

	Included frameworks/libraries

	Usage

	FAQ

	lib-cpp
	Purpose

	Design

	Included frameworks/libraries

	Usage
	Installing

	Building the project

	Generating the documentation

	Running tests

	FAQ

	pub-thesis-latex
	Purpose

	Design

	Included frameworks/libraries

	Usage
	Building your thesis - LaTeX / PDFLaTeX
	Using latexmk (Unix/Linux/Windows)

	Using the make file (Unix/Linux)

	Shell script for PDFLaTeX (Unix/Linux)

	Using the batch file on Windows OS (PDFLaTeX)

	Building your thesis - XeLaTeX
	Using latexmk (Unix/Linux/Windows)

	Building your thesis - LuaLaTeX
	Using latexmk (Unix/Linux/Windows)

	Usage details
	Class options

	Title page

	Abstract separate

	Chapter mode

	Draft

	Choosing the fonts

	Choosing the bibliography style

	Choosing the page style

	Changing the visual style of chapter headings

	Custom settings

	Nomenclature definition

	Git hooks

	General guidelines

	web-website-python
	Purpose

	Design
	The basic setup

	The advanced setup

	Included frameworks/libraries

	Usage
	The basic template usage

	The advanced template usage

	Automatic Deployment

	FAQ

	Shared FAQ
	What are the available domains?

	How do I publish my documentation?
	Read the Docs

	Github Pages

	What is Dependabot and how do I set it up?

	Release Drafter

	How do I add a new template?

	Github Support
	Overview

	Branches
	Overview

	Branch protection rules

	Github Actions
	Overview

	main_master_branch_protection workflow

	release drafter workflow

	sync_project.yml

	Secrets
	Error Handling due to failed Github repository creation

	Issue labels

	Contributing
	Types of Contributions
	Report Bugs

	Fix Bugs

	Implement Features

	Add Templates

	Write Documentation

	Submit Feedback

	Get Started!

	Pull Request Guidelines

	Tips

	Adding new templates
	Template requirements

	Step by step guide to adding new templates

	External Python based projects

	FAQ
	I need help with cookietemple. How can I get in contact with the developers?

	I am looking for a template for domain x and language y, but it does not exist yet!

	Troubleshooting

	Community
	Development Leads

	Core contributors

	Contributors

	Contributor Covenant Code of Conduct
	Our Pledge

	Our Standards

	Our Responsibilities

	Scope

	Enforcement

	Attribution

Indices and tables

	Index

	Module Index

	Search Page

 [image: pic1]

[image: Github Workflow Build cookietemple Status]
 [https://github.com/zethson/cookietemple/workflows/Build%20Cookietemple%20Package/badge.svg][image: Github Workflow Tests Status]
 [https://github.com/cookiejar/cookietemple/actions/workflows/run_tests.yml/badge.svg][image: PyPi Status]
 [https://pypi.python.org/pypi/cookietemple][image: Apache 2.0 license]
 [https://github.com/cookiejar/cookietemple/blob/master/LICENSE][image: Documentation Status]
 [https://cookietemple.readthedocs.io/en/latest/?badge=latest][image: Codecov Status]
 [https://codecov.io/gh/cookiejar/cookietemple][image: Dependabot Enabled]
 [https://flat.badgen.net/dependabot/thepracticaldev/dev.to?icon=dependabot][image: Zenodo ID]
 [https://zenodo.org/badge/latestdoi/202421008][image: Discord]
 [https://discord.gg/PYF8NUk][image: Twitter Follow]
 [https://twitter.com/cookiejarorg]A cookiecutter based project template creation tool supporting several domains and languages with advanced linting, syncing and standardized workflows to get your project kickstarted in no time.

	Documentation: https://cookietemple.readthedocs.io .

cookietemple overview

Installing

Start your journey with cookietemple by installing it via $ pip install cookietemple.

See Installation [https://cookietemple.readthedocs.io/en/latest/readme.html#installing].

config

Configure cookietemple to get started.

[image: _images/0aa1382cf22a32ff8b3fba49b26c7854137322ce.gif]

See Configuring cookietemple [https://cookietemple.readthedocs.io/en/latest/config.html]

list

List all available cookietemple templates.

[image: _images/53c8ce62460d9d1ab07d15250d73ce1924f07b1d.gif]

See Listing all templates [https://cookietemple.readthedocs.io/en/latest/list_info.html#list].

info

Get detailed information on a cookietemple template.

[image: _images/a254e62ce61b9227291223d553dfcf8b638e208c.gif]

See Get detailed template information [https://cookietemple.readthedocs.io/en/latest/list_info.html#info].

create

Kickstart your customized project with one of cookietemple’s templates in no time.

[image: _images/af549c1166eb70d106a5ea32ac4204a429403f65.gif]

See Create a project [https://cookietemple.readthedocs.io/en/latest/create.html].

lint

Use advanced linting to ensure your project always adheres to cookietemple’s standards.

[image: _images/4ecf6147badb93846bb5131e3a43993764a10436.gif]
See Linting your project [https://cookietemple.readthedocs.io/en/latest/lint.html]

bump-version

Bump your project version with many configurable options.

[image: _images/40cd971a48f7f60d29c98014b343f9c64694a198.gif]

See Bumping the version of an existing project [https://cookietemple.readthedocs.io/en/latest/bump_version.html].

sync

Sync your project with the latest cookietemple release to get the latest template features.

[image: _images/9d7c0c4518111439527ada0152ee454e0ecb6942.gif]

See Syncing a project [https://cookietemple.readthedocs.io/en/latest/sync.html].

warp

Create a self contained executable.
Currently, cookietemple does not ship any templates anymore, where this may be required.

See Warping a project [https://cookietemple.readthedocs.io/en/latest/warp.html].

upgrade

Check whether you are using the latest cookietemple version and update automatically to benefit from the latest features.

See https://cookietemple.readthedocs.io/en/latest/upgrade.html.

Projects using cookietemple

	cookietemple website [https://github.com/cookiejar/cookietemple_website]

	system-intelligence [https://github.com/mlf-core/system-intelligence]

	mlf-core [https://github.com/mlf-core/mlf-core]

Contributing

cookietemple is a huge open-source effort and highly welcomes all contributions! Join our Discord Channel [https://discord.gg/PYF8NUk].
Please read contributing [https://cookietemple.readthedocs.io/en/latest/contributing.html] to find out how you can contribute.

Authors

cookietemple was initiated and developed by Lukas Heumos (Github) [https://github.com/zethson] and Philipp Ehmele (Github) [https://github.com/Imipenem].
A full list of contributors is available on our statistics webpage [https://www.cookietemple.com/stats].

Installation

Stable release

To install cookietemple, run this command in your terminal:

$ pip install cookietemple

This is the preferred method to install cookietemple, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for cookietemple can be downloaded from the Github repo [https://github.com/cookiejardealer/cookietemple].

You can either clone the public repository:

$ git clone git://github.com/cookiejar/cookietemple

Or download the tarball [https://github.com/cookiejardealer/cookietemple/tarball/master]:

$ curl -OJL https://github.com/cookiejar/cookietemple/tarball/master

Once you have a copy of the source, you can install it with:

$ pip install .

Alternatively you can also install it using the Makefile:

$ make install

Upgrading cookietemple

Every time cookietemple is run it will automatically check whether a newer version has been released on PyPI.
If a new version has been released you will be informed. To upgrade cookietemple either run:

$ pip install --upgrade cookietemple

or by invoking:

$ cookietemple upgrade

For more information please visit Upgrade cookietemple.

Windows Installation

Cookietemple exceeds the standard windows path length limit of 260 characters.
In order to correctly install cookietemple the registry has to be adapted.
To open the registry editor run:

$ regedit

in your command prompt or directly open it through windows search bar.

Consider backing up your current registry state as changes in the registry can always cause problems resulting in
your OS not running correctly. You can either export the complete registry by selecting File > Export … and setting
the Export Range flag to ‘All’ or choose to export only selected branches.

Next find the key ‘LongPathsEnabled’ under

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\FileSystem

and change its ‘Value Data’ from ‘0’ to ‘1’.

Click ‘OK’ and close regedit. Continue installing cookietemple.

Create a project

Creating projects from templates is the heart of cookietemple.
Our templates adhere to best practices and try to be as modern as possible. Furthermore, they try to automate tasks such as automatically dependency resolvement and installation, packaging, deployment and more.
To learn more about our templates please visit Available templates and check out your template of interest.

Usage

The creation of a new project can be invoked by

$ cookietemple create

which will guide you through the creation process of your (customized) project via prompts. If you do not have cookietemple configured yet, you will be asked to do so. For more details please visit Configure cookietemple.

The prompts follow the pattern of domain (e.g. cli, gui, …), subdomain (if applicable, e.g. website), language (e.g. Python) followed by template specific prompts (e.g. testing frameworks, …).
The project will be created at the current working directory, where cookietemple has been called.

After the project has been created, linting (see Linting your project) is automatically performed to verify that the template creation process was successful.

Finally, you will be asked whether you want to automatically push your new project to Github. Note that for this purpose you need to have cookietemple configured with a Github personal access token.
For more details about the Github support please visit Github Support.

Flags

	--domain : To directly create a template of the the corresponding domain.

	--path [CWD]: An absolute or relative path to create the template at.

All further prompts will still be asked for. Example: cli.
It is also possible to directly create a specific template using its handle

Getting information about available templates

Although, information on all cookietemple templates is provided in Available templates in our documentation, it is often times more convenient to get a quick overview from the commandline.
Hence, cookietemple provides two commands list and info, which print information on all available templates with different levels of detail.

list

cookietemple list is restricted to the short descriptions of the templates. If you want to read more about a specific (sets of) template, please use the info command.

[image: List example]

Example output of cookietemple list. Note that the content of the output is of course subject to change.

Usage

cookietemple list can be invoked via

$ cookietemple list

info

The info command should be used when the short description of a template is not sufficient and a more detailed description of a specific template is required.

[image: Info example]

Example output of cookietemple info.

Usage

Invoke cookietemple info via

$ cookietemple info <HANDLE/LANGUAGE/DOMAIN>

	HANDLE : a cookietemple template handle such as cli-python.

	DOMAIN : a domain for which cookietemple provides templates for. Example: cli.

	LANGUAGE : A programming language for which cookietemple provides templates for. Example: python.

Linting your project

Linting [https://en.wikipedia.org/wiki/Lint_(software)] is the process of statically analyzing code to find code style violations and to detect errors.
cookietemple implements a custom linting system, but depending on the template external tools linting tools may additionally be called.

cookietemple’s linting is divided into three distinct phases.

	All linting functions, which all templates share are called and the results are collected.

	Template specific linting functions are invoked and the results are appended to the results of phase 1

The linting results of the first two phases are assigned into 3 groups:

	Passed

	Passed with warning

	Failed

If any of the checks failed linting stops and returns an error code.

[image: Linting example]

Linting applied to a newly created cli-java project.

To examine the reason for a failed linting test please follow the URL. All reasons are explained in the section Linting codes.

Usage

cookietemple lint can be invoked on an existing project using

$ cookietemple lint <PATH>

	PATH [CWD]: The relative path to the project directory.

Flags

Linting codes

The following error numbers correspond to errors found during linting.
If you are not sure why a specific linting error has occurred you may find more information using the respective error code.

General

general-1

File not found. This error occurs when your project does not include all of cookietemple’s files, which all templates share.

Please create the file and populate it with appropriate values. You should also critically reflect why it is missing, since
at the time of the project creation using cookietemple this file should not have been missing!

general-2

Dockerfile invalid. This error usually originates from empty Dockerfiles or missing FROM statements.

general-3

TODO string found. The origin of this error are COOKIETEMPLE TODO: or TODO COOKIETEMPLE: strings in the respective files. Usually, they point to things that should be
manually configured or require other attention. You may remove them if there is no task for you to be solved.

general-4

Cookiecutter string found. This error occurs if something went wrong at the project creation stage. After a project has been created using cookietemple
there should not be any jinja2 syntax statements left. Web development templates may pose exceptions. However, {{ *cookiecutter* }} statements
should definitely not be present anymore.

general-5

Versions not consistent. If the version of all files specified in the [bumpversion] sections defined in the qube.cfg file are not consistent,
this error may be found. Please ensure that the version is consistent! If you need to exclude specific lines from this check please consult Bumping the version of an existing project.
To prevent this error you should only increase the version of your project using cookietemple bump-version.

general-6

changelog.rst invalid. The changelog.rst file requires that every changelog section has a header with the version and the corresponding release date.
The version above another changelog section should always be greater than the section below (e.g. 1.1.0 above 1.0.0).
Every section must have the headings **Added**, **Fixed**, **Dependencies** and **Deprecated**.

general-7

cookietemple.cfg linting failed. The cookietemple.cfg plays a major role in cookietemple’s sync and bump-version functionality.

The linter ensures that following requirements are met:

1.) Every config file should have at least the following sections: bumpversion, bumpversion_files_whitelisted, bumpversion_files_blacklisted, sync_files_blacklisted, sync_level

2.) bumpversion should only contain a current_version value (the project’s current version)

3.) bumpversion_files_whitelisted should contain at least the .cookietemple.yml file in the dot_cookietemple variable

4.) sync_level should only contain a ct_sync_level value (and this value should be one of either patch, minor or major)

5.) sync_files_blacklisted should contain at least the CHANGELOG.rst file (excluding it from syncing to avoid PR updates)

6.) sync should only contain a sync_enabled value (and this value should be one of either True|true|Yes|yes|Y|y|False|false|No|no|N|n)

cli-python

cli-python-1

File not found. This error occurs when your project does not include all of cli-python’s expected files.

Please create the file and populate it with appropriate values. You should also critically reflect why it is missing, since
at the time of the project creation using cookietemple this file should not have been missing!

cli-python-2

PyPI dependency not up to date. The dependencies specified in the requirements.txt and requirements_dev.txt are not up to date.

It is up to you whether you can and want to update them.

cli-python-3

The cookietemple.cfg section called sync_files_blacklisted misses either requirements = requirements.txt, requirements_dev = requirements_dev.txt or
changelog = CHANGELOG.rst.
All are required to exclude them from syncing and interference with services like dependabot.

cli-java

cli-java-1

File not found. This error occurs when your project does not include all of cli-java’s expected files.

Please create the file and populate it with appropriate values. You should also critically reflect why it is missing, since
at the time of the project creation using cookietemple this file should not have been missing!

cli-java-2

The cookietemple.cfg section called sync_files_blacklisted misses build_gradle = gradle.build or
changelog = CHANGELOG.rst.
Both are required to exclude the gradle build file from syncing.

lib-cpp

lib-cpp-1

File not found. This error occurs when your project does not include all of lib-cpp’s expected files.

Please create the file and populate it with appropriate values. You should also critically reflect why it is missing, since
at the time of the project creation using cookietemple this file should not have been missing!

lib-cpp-2

The cookietemple.cfg section called sync_files_blacklisted misses changelog = CHANGELOG.rst.
This is required to be excluded from syncing.

web-python

web-python-1

File not found. This error occurs when your project does not include all of web-python’s expected files.

Please create the file and populate it with appropriate values. You should also critically reflect why it is missing, since
at the time of the project creation using cookietemple this file should not have been missing!

web-python-2

The cookietemple.cfg section called sync_files_blacklisted misses either requirements = requirements.txt, requirements_dev = requirements_dev.txt
or changelog = CHANGELOG.rst.
All are required to exclude them from syncing and interference with services like dependabot.

gui-java

gui-java-1

File not found. This error occurs when your project does not include all of gui-java’s expected files.

Please create the file and populate it with appropriate values. You should also critically reflect why it is missing, since
at the time of the project creation using cookietemple this file should not have been missing!

gui-java-2

The cookietemple.cfg section called sync_files_blacklisted misses pom = pom.xml or changelog = CHANGELOG.rst.
Both are required to be excluded from syncing.

pub-thesis

pub-thesis-1

File not found. This error occurs when your project does not include all of pub-thesis’s expected files.

Please create the file and populate it with appropriate values. You should also critically reflect why it is missing, since
at the time of the project creation using cookietemple this file should not have been missing!

pub-thesis-2

The cookietemple.cfg section called sync_files_blacklisted misses changelog = CHANGELOG.rst.
This is required to be excluded from syncing.

Bumping the version of an existing project

Increasing the version of an already existing project is often times a cumbersome and error prone process, since the version has to be changed in multiple places.
To facilitate this process, cookietemple provides a bump-version command, which conveniently increases the version across several files and commits them.
Additionally, bump-version inserts a new section into the changelog using the specified new version.

New Version (Date)

Added

Fixed

Dependencies

Deprecated

bump-version will verify that your new version adheres to semantic versioning [https://semver.org/] and that you are not trying to update it unreasonably.
It is for example not allowed to bump from 2.0.0 to 7.1.2, since in a normal development workflow only 2.0.1, 2.1.0 or 3.0.0 adhere to consecutive semantic versioning [https://semver.org/].
Note that SNAPSHOT versions are allowed! However, it must still follow semantic versioning [https://semver.org/].
Version 1.2.5 therefore cannot be the predecessor of 1.2.5-SNAPSHOT, but only 1.2.4.

Usage

The bump-version command follows the syntax

$ cookietemple bump-version <OPTIONS> X.X.X <PATH>

	X.X.X : The new version, where the X correspond to integers adhering to consecutive semantic versioning [https://semver.org/]. You may append -SNAPSHOT.

	PATH [CWD]: The path to the cookietemple.cfg file, which contains all locations, where the version should be increased.

[image: bump-version example]

bump-version applied to a fresh cli-python project

Note that you can use bump-version without passing any parameters. This way, cookietemple will let you choose from three valid options
to bump your projects version. Note that this will only work in the main directory of your project due to some cli constraints.

Flags

	--downgrade : To downgrade a version.

The changelog won’t be modified. Only use this option as a last resort if something went horribly wrong in your development process. In a normal development workflow, this should never be necessary.

	--project-version : To get the current project version.

No version bumping will be triggered. Using this flag will cancel any commands executed after and exits the program.

	--tag or -t : To tag the bump version commit.

One can use this flag to tag the current bump version commit with the updated version for reuse in releases. Note that this will require to be pushed from local to remote by using git push origin <tagname>.

Configuration

All templates of cookietemple ship with a cookietemple.cfg file, which defines all files bump-version examines.

The bump-version configuration begins with the section:

[bumpversion]
current_version = 0.1.0

where the current version is defined. All files are either white- or blacklisted (see below for explanations).
An arbitrary name is followed by the path to the file: arbitrary_name = path_to_file.

Whitelisted files are listed below a [bumpversion_files_whitelisted] section, e.g.:

[bumpversion_files_whitelisted]
dot_cookietemple = .cookietemple.yml
conf_py = docs/conf.py

All files, which are whitelisted are searched for patterns matching X.X.X, which are updated to the specified new versions.
Any lines, which contain the string <<COOKIETEMPLE_NO_BUMP>> will be ignored.

If files, like Maven pom.xml files, contain many version patterns matching X.X.X, it may be a better idea to blacklist them (section [bumpversion_files_blacklisted]) and enable only specific lines to be updated:

[bumpversion_files_blacklisted]
pom = pom.xml

Analogously to whitelisted files, which allow for specific lines to be ignored, blacklisted files allow for specific lines to be forcibly updated using the string <<COOKIETEMPLE_FORCE_BUMP>>.

Note that those tags must be on the same line as the version (commonly placed in a comment), otherwise they won’t work!

Syncing your project

Syncing is supposed to integrate any changes to the cookietemple templates back into your already existing project.
When cookietemple sync is invoked, cookietemple checks whether a new version of the corresponding template for the current project is available.
If so, cookietemple creates a temporary project with the most recent template and pushes it to the TEMPLATE branch.
Next, a pull request is submitted to the development branch.
Please note that the required CT_SYNC_TOKEN (see below) is automatically set and manual syncing should be avoided if possible.

The syncing process is configurable by setting the desired lower syncing boundary level and blacklisting files from syncing (see Enable/Disable sync).

Requirements for sync

For syncing to work properly, your project has to satisfy a few things:

	A Github repository with your projects code (private or public, organization or non-organization repository).

	An unmodified .cookietemple.yml file. If you modify this file, which you should never do, syncing may not be able to recreate the project with the most recent template.

	An active repository secret called CT_SYNC_TOKEN for your project’s repository containing the encrypted personal access token with at least repo scope.

	A running, unmodified workflow called sync_project.yml. Modifying this workflow should never be done and results in undefined sync behaviour.

Points 3 and 4 are only required when not syncing manually.

Usage

To sync your project manually, simply run

$ cookietemple sync [PROJECT_DIR] [PAT] [GITHUB_USERNAME]

	PROJECT_DIR [CWD] : The path to the cookietemple.cfg file.

	PAT [Configured pat] : A Github personal access token with at least the repo scope. The sync_project.yml Github workflow uses the PAT set as a Github secret.

	GITHUB_USERNAME [Configured username] : The Github username to submit a pull request from. The supplied PAT has to be associated with this username.

Flags

	--set-token : Update CT_SYNC_SECRET of your project’s repo to a new PAT. Note that the Github username and the PAT must still match for automatic syncing to work.

	check-update : Check, whether a new release of a template for an already existing project is available.

Configuring sync

Enable/Disable sync

Cookietemple aims to provide the user as much configuration as possible. So, the sync feature is optional and should also
be switched on or off. If you want to enable sync (which is the default), the sync_enable accepts the following values: True, true, Yes, yes, Y, y. To disable sync,
simply change this value into one of False, false, No, no, N, n. It can be configured in the:

[sync]
sync_enable = True

section.

Sync level

Since cookietemple strongly adheres to semantic versioning our templates do too.
Hence, it is customizable whether only major, minor or patch releases of the template should trigger cookietemple sync.
The sync level therefore specifies a lower boundary. It can be configured in the:

[sync_level]
ct_sync_level = minor

section.

Blacklisting files

Although, cookietemple only submits pull requests for files, which are part of the template, sometimes even those files should be ignored.
Examples could be any html files, which, at some point, contain only custom content and should not be synced.
When syncing, cookietemple examines the cookietemple.cfg file and ignores any file patterns (globs) (e.g. *.html) below the [sync_files_blacklisted] section.
IMPORTANT NOTE: If you would like to add some files to this section, make sure your current branch (if you are syncing manually, which is not recommended) or your default branch
has the latest blacklisted sync file section with your changes, so it will be used by the sync.

Packaging using warp

cookietemple ships with Rust binaries of Warp [https://github.com/dgiagio/warp] for the three major operating systems, Linux, MacOS and Windows.
Warp can be called when complex output scripts with dependencies should be merged into single, distributable binaries.
An example would be the output of jlink [https://docs.oracle.com/javase/9/tools/jlink.htm] applied to modular Java projects.
However, warp can also be applied to .NET Core projects, NodeJS and others, making it more flexible than e.g. the with Java 14 introduced JPackager.

[image: Warp example]

Example output of cookietemple warp applied to a (former) gui-java project. The project was first packaged using mvn javafx:jlink and then warp was applied. Please note the relative path for --exec. Note that this is not necessary for GraalVM based projects.

The resulting binary is self contained and does not have any additional dependencies. Note however, that the binaries are not cross platform. You need to compile and package on the target platform.
For more information please read the Warp README [https://github.com/dgiagio/warp].
Currently no cookietemple template requires Warp.

Warp setup

Warp for all major platforms (Linux, Windows 10+, MacOS) is already shipped with cookietemple. Hence, there is no need to install the Warp externally.
However, the first time that you invoke Warp you may be asked for your sudo/administrator password, since the Warp executable needs to be granted executable rights.
You should only be prompted once, since this setting is permanent. If you update cookietemple or reinstall, the Warp executable may be replaced and you once again need to provide it the required rights.

Usage

Invoke warp by running

$ cookietemple warp --input_dir <INPUTDIR> --exec <EXECUTABLE> --output <OUTPUT>

Flags

	input-dir: The path to the directory to package.

	--exec: A relative path from the packaged folder to the executable. Please note that the --exec operates relative to the packaged folder and may result in ‘file not found’ errors, if a wrongly relative path is given!

	--output: A path to the output directory.

Configure cookietemple

To prevent frequent prompts for information, which rarely or never changes at all such as the full name, email or Github username of the user, cookietemple uses a configuration file.
Moreover, the personal access token associated with the Github username is stored, in encrypted form, to allow for various Github functionalities, such as automatic Github repository creation or Syncing your project.
The creation of projects with cookietemple requires a configuration file. A personal access token is not required, if Github support is not used.
The configuration file is saved operating system dependent in common config file locations (~/.config/cookietemple on Unix, C:\Users\Username\AppData\Local\cookietemple\cookietemple on Windows).
Configuring cookietemple is only required once, although it is always possible to update the current configuration.

Usage

Invoke cookietemple config via

$ cookietemple config <all/general/pat>

	all : Prompt for the full name, email, Github username, whether to create a cookietemple topic for repos or not and Github personal access token.

	general : Only prompt for the full name, email, the Github username and whether to create a cookietemple topic in repos or not.

These details are required to create projects.

	pat : Solely prompts for the Github personal access token and updates it if already set.

Ensure that your Github username still matches with the new personal access token.
If not you should also update your Github username via cookietemple config general. Additionally, any of your already created projects may still feature your old token and you may therefore run into issues when attempting to push.
Hence, you must also update your remote URL [https://help.github.com/en/github/using-git/changing-a-remotes-url] for those projects!

Flags

	--view : To get your current cookietemple configuration.

The explicit value of your Github personal access token will not be printed. You will only be informed about whether it is set or not.

On Github personal access tokens

cookietemple’s Github support requires access to your Github repositories to create repositories, add issues labels and set branch protection rules.
Github manages these access rights through Personal Access Tokens (PAT).
If you are using cookietemple’s Github support for the first time cookietemple config pat will be run and you will be prompted for your Github PAT.
Please refer to the official documentation [https://help.github.com/en/github/authenticating-to-github/creating-a-personal-access-token-for-the-command-line] on how to create one.
cookietemple requires repo access and workflow. This ensures that your PAT would not even allow for the deletion of repositories.
cookietemple then encrypts the Personal Access Token, adds the encrypted token to the cookietemple_conf.cfg file and saves the key locally in a hidden place.
This is safer than Github’s official way, which recommends the usage of environment variables or Github Credentials, which both save the token in plaintext.
It is still strongly advised to secure your personal computer and not allow any foe to get access.

Upgrade cookietemple

Every time cookietemple is run it will automatically contact PyPI to check whether the locally installed version of cookietemple is the latest version available.
If a new version is available cookietemple can be trivially upgraded. Note that pip must be available in your PATH.
It is advised not to mix installations using setuptools directly and pip. If you are not a developer of cookietemple this should not concern you.

Usage

$ cookietemple upgrade

Available templates

cookietemple currently has the following templates available:

	cli-java

	cli-python

	gui-java

	lib-cpp

	pub-thesis-latex

	web-website-python

In the following every template is devoted its own section, which explains its purpose, design, included frameworks/libraries, usage and frequently asked questions.
A set of frequently questions, which all templates share see here: Shared FAQ FAQ.
It is recommended to use the sidebar to navigate this documentation, since it is very long and cumbersome to scroll through.

cli-python

Purpose

cli-python is a Python [https://www.python.org/] based template designed for command line applications,
but it may also be easily used as standard Python package without any command line interface. It is an improved version of cookiecutter-hypermodern-python [https://github.com/cjolowicz/cookiecutter-hypermodern-python].

Design

The Python package is based on a standard poetry structure [https://python-poetry.org/] with a corresponding pyproject.toml and poetry.lock file.

├── AUTHORS.rst
├── .bandit.yml
├── codecov.yml
├── CODE_OF_CONDUCT.rst
├── cookietemple.cfg
├── .cookietemple.yml
├── .darglint
├── Dockerfile
├── docs
│ ├── authors.rst
│ ├── code_of_conduct.rst
│ ├── conf.py
│ ├── index.rst
│ ├── installation.rst
│ ├── make.bat
│ ├── Makefile
│ ├── readme.rst
│ ├── reference.rst
│ ├── requirements.txt
│ ├── _static
│ │ └── custom_cookietemple.css
│ └── usage.rst
├── .editorconfig
├── .flake8
├── .gitattributes
├── .github
│ ├── dependabot.yml
│ ├── ISSUE_TEMPLATE
│ │ ├── bug_report.md
│ │ ├── feature_request.md
│ │ └── general_question.md
│ ├── labels.yml
│ ├── pull_request_template.md
│ ├── release-drafter.yml
│ └── workflows
│ ├── build_package.yml
│ ├── check_no_SNAPSHOT_master.yml
│ ├── check_patch_release_master_only.yml
│ ├── constraints.txt
│ ├── labeler.yml
│ ├── publish_docs.yml
│ ├── publish_package.yml
│ ├── run_cookietemple_lint.yml
│ ├── run_tests.yml
│ ├── release-drafter.yml
│ └── sync_project.yml
├── .gitignore
├── LICENSE
├── Makefile
├── makefiles
│ ├── Linux.mk
│ └── Windows.mk
├── mypy.ini
├── noxfile.py
├── poetry.lock
├── .pre-commit-config.yaml
├── .prettierignore
├── pyproject.toml
├── README.rst
├── .readthedocs.yml
│ └── project_name
│ ├── __init__.py
│ ├── __main__.py
│ └── py.typed
└── tests
 ├── __init__.py
 └── test_main.py

Included frameworks/libraries

	poetry [https://python-poetry.org/] for code packaging

	click [https://click.palletsprojects.com/] or no command line interface

	pytest [https://docs.pytest.org/en/latest/] or unittest [https://docs.python.org/3/library/unittest.html] as testing frameworks

	nox [https://nox.thea.codes/en/stable/] to automate testing in multiple Python environments

	pre-commit [https://pre-commit.com/] to run various code style linters and to enforce a common style

	Preconfigured readthedocs [https://readthedocs.org/]

	Eight Github workflows:

	build_docs.yml, which builds the readthedocs documentation.

	build_package.yml, which builds the cli-python package.

	publish_package.yml, which publishes the package to PyPi. Note that it only runs on Github release and requires PyPi secrets to be set up.

	run_tests, apply codecov to your project/PRs in your project and create automatically a report with the details at codecov.io [https://codecov.io]

	main_master_branch_protection: Please read main_master_branch_protection workflow.

	release-drafter.yml: Please read release drafter workflow.

	run_cookietemple_lint.yml, which runs cookietemple lint on the project.

	sync_project.yml, which syncs the project to the most recent cookietemple template version

We highly recommend to use click (if commandline interface is required) together with pytest.

Usage

The package requires the installation of poetry, nox and nox-poetry.
Then generated cli-python project can be installed using:

make install

or alternatively:

poetry install

Your package is then installed in a custom virtual environment on your machine and can be called from your favorite shell:

<<your_project_name>>

Run all pre-commit tests with:

make test-all

Ensure that you have nox nox-poetry installed (as specified in the .github/workflows/constraints.txt file.
Other make targets include:

make clean

which removes all build files:

make build

which builds source and wheel packages, which can then be used for a PyPi release using:

make release

All possible Makefile commands can be viewed using:

make help

FAQ

Do I need a command line interface?

No you do not need a command line interface. cli-python can also be used as a Python package.
Simply remove all command line related code. At some point we will try to offer a version without a command line interface.

flake8 and darglint are very slow

This is a known issue with Google and Numpy doc styles: https://github.com/terrencepreilly/darglint/issues/186
If this is a concern to you feel free to remove darglint.

cli-java

Purpose

cli-java is a Java [https://www.java.com] based template for designed for command line applications, which require a fast startup time.
Hence, it is based on GraalVM [https://www.graalvm.org/], which allows for the packaging of the application into small, native self-contained executables.
Picocli [https://picocli.info/] is used as main library for the design of the command line interface.

Design

The template is based on a standard Maven directory structure [https://www.baeldung.com/maven-directory-structure]. However, it is using Gradle [https://gradle.org/] as build tool.

├── build.gradle
├── CODE_OF_CONDUCT.rst
├── cookietemple.cfg
├── .cookietemple.yml
├── Dockerfile
├── docs
│ ├── authors.rst
│ ├── code_of_conduct.rst
│ ├── conf.py
│ ├── index.rst
│ ├── installation.rst
│ ├── make.bat
│ ├── Makefile
│ ├── readme.rst
│ ├── requirements.txt
│ ├── _static
│ │ └── custom_cookietemple.css
│ └── usage.rst
├── .editorconfig
├── .gitattributes
├── .github
│ ├── dependabot.yml
│ ├── ISSUE_TEMPLATE
│ │ ├── bug_report.md
│ │ ├── feature_request.md
│ │ └── general_question.md
│ ├── pull_request_template.md
│ ├── release-drafter.yml
│ └── workflows
│ ├── build_deploy.yml
│ ├── main_master_branch_protection.yml
│ ├── publish_docs.yml
│ ├── release-drafter.yml
│ ├── run_checkstyle.yml
│ ├── run_cookietemple_lint.yml
│ ├── run_tests.yml
│ └── sync_project.yml
├── .gitignore
├── gradle
│ └── wrapper
│ ├── gradle-wrapper.jar
│ └── gradle-wrapper.properties
├── gradlew
├── gradlew.bat
├── LICENSE
├── Makefile
├── makefiles
│ ├── Linux.mk
│ └── Windows.mk
├── .prettierignore
├── .project
├── README.rst
├── .readthedocs.yml
├── .settings
│ └── org.eclipse.buildship.core.prefs
├── settings.gradle
└── src
 ├── main
 │ └── java
 │ └── com
 │ └── organization
 │ └── Exploding_springfield.java
 └── test
 └── java
 └── com
 └── organization
 ├── Exploding_springfieldImageTest.java
 ├── Exploding_springfieldTest.java
 └── NativeImageHelper.java

Included frameworks/libraries

	Gradle [https://gradle.org/] as build tool

	GraalVM [https://www.graalvm.org/] as main JDK and virtual layer to allow for native binaries

	GraalVM Native Image [https://www.graalvm.org/docs/reference-manual/native-image/] to build platform dependent self-contained executables

	JUnit 5 [https://junit.org/junit5/] as main testing framework

	Picocli [https://picocli.info/] to implement the command line interface

	Preconfigured readthedocs [https://readthedocs.org/]

	Seven Github workflows:

	build_docs.yml, which builds the Read the Docs documentation.

	build_deploy.yml, which builds the cli-java project into Linux, MacOS and Windows executables. They are deployed as build artifacts.

	run_checkstyle.yml, which runs checkstyle [https://checkstyle.sourceforge.io/] linting using Google’s ruleset.

	run_tests.yml, which runs all JUnit tests.

	main_master_branch_protection: Please read main_master_branch_protection workflow.

	release-drafter.yml: Please read release drafter workflow.

	run_cookietemple_lint.yml, which runs cookietemple lint on the project.

	sync_project.yml, which syncs the project to the most recent cookietemple template version

Usage

cli-java requires you to have Gradle [https://gradle.org/], GraalVM [https://www.graalvm.org/] and
GraalVM Native Image [https://www.graalvm.org/docs/reference-manual/native-image/] installed.
Please follow the instructions on the respective websites to install them. Ensure that GraalVM is the default JDK by running java –version

A platform dependent executable (of the current running operating system!) can then be build by invoking:

make binary

or alternatively:

gradle build

Your platform dependent executable can then be found in the folder build/native-image.

Alternatively you can directly build and run your binary by invoking:

make run

All tests can be run by:

make test

Other make targets include:

make clean

which removes all build files:

make dist

All possible Makefile commands can be viewed using:

make help

FAQ

Can I use cli-java without GraalVM?

cli-java is purposefully designed with GraalVM and native images in mind. We advise against using it without GraalVM.

How can I access the build artifacts?

Go to the Github Actions tab, select the build_deploy workflow and there you can find the artifacts.
Note that the workflow must have completed successfully for all operating systems.

gui-java

Purpose

gui-java is a modular JavaFX [https://openjfx.io/] based template to build cross platform Desktop graphical user interfaces (GUIs).

It uses Apache Maven [https://maven.apache.org/] to compile the package and Packaging using warp to distribute binaries containing a Java Runtime Environment (JRE).

Design

The template follows the standard Maven directory layout [https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html].
Therefore, all dependencies are defined in the pom.xml file, the tool source code is in src/java and the tests in src/test.

Please be aware that gui-java is a modular Java 11+ project, which requires a few modifications to distribute and build JavaFX applications.
As a result, binaries are a lot smaller. Assuming that your organization is called cookiejardealer, the file tree looks as follows:

├── CODE_OF_CONDUCT.rst
├── cookietemple.cfg
├── .cookietemple.yml
├── Dockerfile
├── docs
│ ├── authors.rst
│ ├── code_of_conduct.rst
│ ├── conf.py
│ ├── index.rst
│ ├── installation.rst
│ ├── make.bat
│ ├── Makefile
│ ├── readme.rst
│ ├── requirements.txt
│ ├── _static
│ │ └── custom_cookietemple.css
│ └── usage.rst
├── .editorconfig
├── .github
│ ├── dependabot.yml
│ ├── ISSUE_TEMPLATE
│ │ ├── bug_report.md
│ │ ├── feature_request.md
│ │ └── general_question.md
│ ├── pull_request_template.md
│ ├── release-drafter.yml
│ └── workflows
│ ├── compile_package.yml
│ ├── main_master_branch_protection.yml
│ ├── publish_docs.yml
│ ├── release-drafter.yml
│ ├── run_cookietemple_lint.yml
│ ├── run_java_linting.yml
│ ├── run_tests.yml
│ └── sync_project.yml
├── .gitignore
├── LICENSE
├── Makefile
├── makefiles
│ ├── Linux.mk
│ └── Windows.mk
├── pom.xml
├── .prettierignore
├── README.rst
├── .readthedocs.yml
└── src
 ├── main
 │ ├── java
 │ │ ├── module-info.java
 │ │ └── org
 │ │ └── organization
 │ │ ├── FXMLController.java
 │ │ └── MainApp.java
 │ └── resources
 │ └── org
 │ └── organization
 │ ├── scene.fxml
 │ └── styles.css
 └── test
 └── java
 └── org
 └── organization
 ├── SimpleClickableButtonTest.java
 └── SimpleJUnit5ExampleTest.java

Included frameworks/libraries

	Apache Maven [https://maven.apache.org/] to build and solve dependencies

	JavaFX (14) [https://openjfx.io/] to build a graphical user interface

	JavaFX Maven plugin [https://github.com/openjfx/javafx-maven-plugin] to build a modular package with a JRE

	Packaging using warp to create a single, distributable, platform specific binary

	JUnit 5 [https://junit.org/junit5/] for unit tests

	TestFX [https://github.com/TestFX/TestFX] for JavaFX GUI tests

	Preconfigured readthedocs [https://readthedocs.org/]

	Eight Github workflows:

	build_docs.yml, which builds the readthedocs documentation.

	compile_package.yml, which compiles the gui-java project.

	run_java_linting.yml, which runs checkstyle [https://checkstyle.sourceforge.io/] linting using Google’s ruleset.

	run_tests.yml, which runs the Unit tests. Note that this workflow is currently disabled, since GUI unittests are not possible using Github Actions.

	run_codecov, apply codecov to your project/PRs in your project and create automatically a report with the details at codecov.io [https://codecov.io]

	main_master_branch_protection: Please read main_master_branch_protection workflow.

	release-drafter.yml: Please read release drafter workflow. 8. run_cookietemple_lint.yml, which runs cookietemple lint on the project.

	sync_project.yml, which syncs the project to the most recent cookietemple template version.

Usage

The usage of gui-java is primarily Makefile based. Please be aware that you need Apache Maven [https://maven.apache.org/] and Java 11+ installed.

All (Maven) commands are wrapped into Make commands, but can of course also be called directly:

The generated gui-java project can be installed using:

make install

Other make targets include:

make clean

which removes all build files:

make dist

which runs jlink to build the gui-java project with a custom platform dependent JRE.
Be aware, that this results in six folders. The executable binary can be found in the target/bin folder and is called launcher.

If you want to package the resulting custom JRE together with the launcher and all other required files (aka the six folders), then run the:

make binary

goal. make binary calls the make dist goal and then packages the files into a single, platform dependent executable using Packaging using warp.
This executable can then be easily distributed.

Tests can be run via:

make test

All possible Makefile commands can be viewed using:

make help

FAQ

None yet.

lib-cpp

Purpose

A template for modern C++ projects - both executables and libraries - using CMake, Clang-Format, CI, unit testing and more, with support for downstream inclusion.

Design

The template is inspired by several others (mainly TheLartians’ [https://github.com/TheLartians/ModernCppStarter] and Jason Turner’s <https://github.com/lefticus/cpp_starter_project>). It is using CMake [https://cmake.org/] as its build system.

├── .clang-format
├── .clang-tidy
├── cmake
│ ├── CompilerWarnings.cmake
│ ├── Conan.cmake
│ ├── Doxygen.cmake
│ ├── exploding-springfieldConfig.cmake.in
│ ├── SourcesAndHeaders.cmake
│ ├── StandardSettings.cmake
│ ├── StaticAnalyzers.cmake
│ ├── Utils.cmake
│ ├── Vcpkg.cmake
│ └── version.hpp.in
├── CMakeLists.txt
├── codecov.yaml
├── CODE_OF_CONDUCT.rst
├── CONTRIBUTING.rst
├── cookietemple.cfg
├── .cookietemple.yml
├── Dockerfile
├── docs
│ ├── authors.rst
│ ├── code_of_conduct.rst
│ ├── conf.py
│ ├── index.rst
│ ├── installation.rst
│ ├── make.bat
│ ├── Makefile
│ ├── readme.rst
│ ├── requirements.txt
│ ├── _static
│ │ └── custom_cookietemple.css
│ └── usage.rst
├── .editorconfig
├── .github
│ ├── ISSUE_TEMPLATE
│ │ ├── bug_report.md
│ │ ├── feature_request.md
│ │ └── general_question.md
│ ├── pull_request_template.md
│ ├── release-drafter.yml
│ └── workflows
│ ├── build_linux.yml
│ ├── build_macos.yml
│ ├── build_windows.yml
│ ├── main_master_branch_protection.yml
│ ├── publish_docs.yml
│ ├── release-drafter.yml
│ ├── release.yml
│ ├── run_cookietemple_lint.yml
│ └── sync_project.yml
├── .gitignore
├── include
│ └── exploding-springfield
│ └── tmp.hpp
├── LICENSE
├── Makefile
├── makefiles
│ ├── Linux.mk
│ └── Windows.mk
├── .prettierignore
├── README.rst
├── .readthedocs.yml
├── src
│ └── tmp.cpp
└── test
 ├── CMakeLists.txt
 └── src
 └── tmp_test.cpp

Included frameworks/libraries

	Modern CMake configuration and project

	An example of a Clang-Format config, inspired from the base
Google model, with minor tweaks.

	Static analyzers integration, with Clang-Tidy and Cppcheck, the former being the default option

	Doxygen support, through the ENABLE_DOXYGEN option, which can enable if desired_config

	Unit testing support, through GoogleTest (with an option to enable GoogleMock) or Catch2

	Code coverage, enabled by using the ENABLE_CODE_COVERAGE option, through Codecov CI integration

	Package manager support, with Conan and Vcpkg, through their respective options

	CI workflows for Windows, Linux and MacOS using GitHub Actions, making use of the caching features, to ensure minimum run time

	Options to build as a header-only library or executable, not just a
static or shared library

	CCache integration, for speeding up build times

Usage

Installing

To install an already built project, you need to run the install
target with CMake. For example:

cmake --build build --target install --config Release

a more general syntax for that command is:
cmake --build <build_directory> --target install --config <desired_config>

Building the project

To build the project, all you need to do, after
correctly `installing the project <README.rst#Installing>`_, is run
a similar CMake routine to the the one below:

mkdir build/ && cd build/
cmake .. -DCMAKE_INSTALL_PREFIX=/absolute/path/to/custom/install/directory
cmake --build . --target install

Note: The custom CMAKE_INSTALL_PREFIX can be omitted if you
wish to install in the default install
location [https://cmake.org/cmake/help/latest/module/GNUInstallDirs.html].

More options that you can set for the project can be found in the
cmake/StandardSettings.cmake
file. For certain options additional
configuration may be needed in their respective *.cmake files (i.e.
Conan needs the CONAN_REQUIRES and might need the CONAN_OPTIONS
to be setup for it work correctly; the two are set in the
cmake/Conan.cmake file).

Generating the documentation

In order to generate documentation for the project, you need to
configure the build to use Doxygen. This is easily done, by modifying
the workflow shown above as follows:

mkdir build/ && cd build/
cmake .. -D<project_name>_ENABLE_DOXYGEN=1 -DCMAKE_INSTALL_PREFIX=/absolute/path/to/custom/install/directory
cmake --build . --target doxygen-docs

Note: This will generate a docs\/ directory in
the **project’s root directory*.*

Running tests

By default, the template uses Google
Test [https://github.com/google/googletest/] for unit testing. Unit
testing can be disabled in the options, by setting the
ENABLE_UNIT_TESTING (from
cmake/StandardSettings.cmake) to be
false. To run the tests, simply use CTest, from the build directory,
passing the desire configuration for which to run tests for. An example
of this procedure is:

cd build # if not in the build directory already
ctest -C Release # or `ctest -C Debug` or any other configuration you wish to test

you can also run tests with the `-VV` flag for a more verbose output (i.e.
#GoogleTest output as well)

FAQ

None yet.

pub-thesis-latex

Purpose

pub-thesis is a latex based template designed for University theses. It is especially suited for Bachelor-, Master theses and dissertations.

The CUED [https://github.com/kks32/phd-thesis-template] PhD thesis template served as basis for this template.

Design

pub-thesis is a modular latex template, which is reflected in the folder structure. The main tex files are thesis.tex and thesis-info.tex.

thesis-info.tex mostly defines general information such as name, degree, university etc and thesis.tex includes all other tex files such as abstracts, chapters etc.

The tex files for these chapters are found in their respective subfolders.

All figures go inside the Figs subfolder and all references should be included in References/references.bib.

├── Abstract
│ └── abstract.tex
├── Acknowledgement
│ └── acknowledgement.tex
├── Appendix1
│ └── appendix1.tex
├── Chapter1
│ └── chapter1.tex
├── Chapter2
│ ├── chapter2.tex
│ └── Figs
│ ├── Raster
│ │ ├── minion.png
│ │ ├── TomandJerry.png
│ │ └── WallE.png
│ └── Vector
│ ├── minion.eps
│ ├── TomandJerry.eps
│ └── WallE.eps
├── Chapter3
│ └── chapter3.tex
├── compile-thesis.sh
├── compile-thesis-windows.bat
├── cookietemple.cfg
├── .cookietemple.yml
├── Declaration
│ └── declaration.tex
├── Dedication
│ └── dedication.tex
├── Dockerfile
├── Figs
│ ├── CollegeShields
│ │ ├── Downing.eps
│ │ ├── Downing.pdf
│ │ ├── Fitzwilliam.eps
│ │ ├── Fitzwilliam.pdf
│ │ ├── FitzwilliamRed.eps
│ │ ├── FitzwilliamRed.pdf
│ │ ├── Gonville_and_Caius.jpg
│ │ ├── Kings.eps
│ │ ├── Kings.pdf
│ │ ├── Licenses.md
│ │ ├── Peterhouse.pdf
│ │ ├── Queens.eps
│ │ ├── Queens.pdf
│ │ ├── src
│ │ │ ├── Downing.svg
│ │ │ ├── Kings.svg
│ │ │ ├── Peterhouse.svg
│ │ │ ├── Queens.svg
│ │ │ └── Trinity.svg
│ │ ├── StJohns.eps
│ │ ├── StJohns.pdf
│ │ ├── Trinity.eps
│ │ └── Trinity.pdf
│ ├── University_Crest.eps
│ ├── University_Crest_Long.eps
│ ├── University_Crest_Long.pdf
│ └── University_Crest.pdf
├── .github
│ └── workflows
│ └── build_thesis.yml
├── .gitignore
├── glyphtounicode.tex
├── hooks
│ ├── install.sh
│ └── pre-commit
├── LICENSE
├── Makefile
├── PhDThesisPSnPDF.cls
├── Preamble
│ └── preamble.tex
├── README.rst
├── References
│ └── references.bib
├── sty
│ └── breakurl.sty
├── thesis-info.tex
├── thesis.pdf
├── thesis.ps
├── thesis.tex
└── Variables.ini

Included frameworks/libraries

	LaTeX, XeLaTeX and LuaLaTeX support

	Draft mode: Draft water mark, timestamp, version numbering and line numbering

	Bibtex [http://www.bibtex.org/Using/] support

	A Github workflow build_thesis.yml, which builds your thesis in a Docker container

Usage

Building your thesis - LaTeX / PDFLaTeX

Using latexmk (Unix/Linux/Windows)

This template supports latexmk. To generate DVI, PS and PDF run

latexmk -dvi -ps -pdf thesis.tex

Using the make file (Unix/Linux)

The template supports PDF, DVI and PS formats. All three formats can be
generated with the provided Makefile.

To build the PDF version of your thesis, run:

make

This build procedure uses pdflatex with bibtex and will produce
thesis.pdf. To use pdflatex with biblatex, you should run:

make BIB_STRATEGY=biblatex

To use XeLaTeX, you should run:

make BUILD_STRATEGY=xelatex

or with biblatex

make BUILD_STRATEGY=xelatex BIB_STRATEGY=biblatex

To use LuaLaTeX, you should run:

make BUILD_STRATEGY=lualatex

or with biblatex

make BUILD_STRATEGY=lualatex BIB_STRATEGY=biblatex

To produce DVI and PS versions of your document, you should run:

make BUILD_STRATEGY=latex

This will use the latex command to build the document and will
produce thesis.dvi, thesis.ps and thesis.pdf documents. You
will need psutils installed

Clean unwanted files

To clean unwanted clutter (all LaTeX auto-generated files), run:

make clean

Note: the Makefile itself is take from and maintained at
here [http://code.google.com/p/latex-makefile/].

Shell script for PDFLaTeX (Unix/Linux)

Usage: sh ./compile-thesis.sh [OPTIONS] [filename]

[option] compile: Compiles the PhD Thesis

[option] clean: removes temporary files - no filename required

Using the batch file on Windows OS (PDFLaTeX)

	Open command prompt and navigate to the directory with the tex file.
Run:

compile-thesis-windows.bat.

	Alternatively, double click on compile-thesis-windows.bat

Building your thesis - XeLaTeX

Using latexmk (Unix/Linux/Windows)

This template supports XeLaTeX compilation chain. To generate PDF
run

latexmk -xelatex thesis.tex
makeindex thesis.nlo -s nomencl.ist -o thesis.nls
latexmk -xelatex -g thesis.tex

Building your thesis - LuaLaTeX

Using latexmk (Unix/Linux/Windows)

This template supports LuaLaTeX compilation chain. To generate PDF
run

latexmk -pdflatex=lualatex -pdf thesis.tex

Usage details

Thesis information such as title, author, year, degree, etc., and other
meta-data can be modified in thesis-info.tex

Class options

The class file, PhDThesisPSnPDF, is based on the standard book
class

It supports the following custom options in the documentclass in
thesis.tex:

(Usage \documentclass[a4paper,11pt,print]{PhDThesisPSnPDF})

	a4paper (default as per the University guidelines) or
a5paper: Paper size

	11pt or 12pt: The University of Cambridge guidelines
recommend using a minimum font size of 11pt (12pt is preferred) and
10pt for footnotes. This template also supports 10pt.

	oneside or twoside (default): This is especially useful for
printing double side (twoside) or single side.

	print: Supports Print and Online Version with different page
margins and hyperlink styles. Use print in the options to
activate Print Version with appropriate margins and page layout and
view styles. Leaving the options field blank will activate Online
version.

	custommargin: You can alter the margin dimension for both print
and online version by using the keyword custommargin in the
options. Then you can define the dimensions of the margin in the
preamble.tex file:

\ifsetCustomMargin
 \RequirePackage[left=37mm,right=30mm,top=35mm,bottom=30mm]{geometry}
 \setFancyHdr
\fi

\setFancyHdr should be called when using custom margins for
proper header/footer dimensions

\ifsetMargin is deprecated, please use \ifsetCustomMargin
instead.

	index: Including this option builds the index, which is placed at
the end of the thesis.

Instructions on how to use the index can be found
here [http://en.wikibooks.org/wiki/LaTeX/Indexing#Using_makeidx].

Note: the package makeidx is used to create the index.

	abstract: This option enables only the thesis title page and the
abstract with title and author to be printed.

	chapter: This option enables only the specified chapter and it’s
references. Useful for review and corrections.

	draft: The default draft mode supports some special features such
as line numbers, images, and water mark with timestamp and custom
text. Position of the text can be modified in preamble.tex.

	draftclassic: This mode is similar to the default draft mode in
the book class. Images are not loaded.

	lineno: Enables pagewise line numbering on the outer edge. You
can switch-off line numbering by specifying nolineno in the
options.

	flushleft: The University recommends using ragged right or flush
left alignment for texts. The reason behind this is left justifying a
text may exclude a certain readers. Dyslexic people find it hard to
read justified text. You can enable raggedright option in the
document class by passing flushleft argument. Default is flush
left and right.

Title page

The front page (title page) resizes to fit your title length. You can
modify the options in thesis-info.tex.

	\subtitle (optional): Adds a subtitle to your thesis.

	\college (optional): This option adds the name of your college on
the bottom left.

If \college is defined, the bottom of the title page will look like
this:

King's College 2014

If \college is undefined or blank, the degreedate will be
centered.

2014

The template offers support to having both the college and university
crests or just one of the crests.

	\collegeshield (optional): Includes college crest in addition to
the university crest. This reformats the front page layout.

Abstract separate

	A separate abstract with the title of the PhD and the candidate name
has to be submitted to the Student Registry. This can be generated
using abstract option in the document class. Ignore subsequent
warnings about skipping sections (if any).

	To generate the separate abstract and the title page, make sure the
following commands are in the preamble section of thesis.tex
file:

\ifdefineAbstract
\includeonly{Abstract/abstract}
\fi

Chapter mode

	The chapter mode allows user to only print specific chapters along
with references. By default, it excludes everything else in the front
matter and appendices. This can done by using chapter option in
the document class in thesis.tex. Ignore subsequent warnings
about skipping sections (if any).

	To generate the separate abstract and the title page, make sure the
following commands are in the preamble section of thesis.tex
file:

\ifdefineChapter
 \includeonly{Chapter3/chapter3}
\fi

Draft

draft adds a watermark draft text with timestamp and version
number at the top or the bottom of the page. Pagewise line numbering is
added on every page. draft settings can be tweaked in the
preamble.tex.

	Use draftclassic in the document class options to use the default
book class draft mode.

	To add figures in draft mode (default enabled), in the preamble set
\setkeys{Gin}{draft=false}. draft=true disables figures

	To change the watermark text

	To change the position of the watermark text. Default watermark
position is top. The location can be changed to (top / bottom)

	To change the draft version. Default draft version is v1.0.

	Watermark grayscale value can be modified. Text grayscale value
(should be between 0-black and 1-white). Default value is 0.75

Choosing the fonts

PhDThesisPSnPDF currently supports three fonts Times,
Fourier and Latin Modern (default).

	times: (The University of Cambridge guidelines recommend using
Times). Specifying times option in the document class will use
mathptpx or Times font with Math Support.

	fourier: fourier font with math support

	default (empty): When no font is specified, Latin Modern is
used as the default font with Math Support.

	customfont: Any custom font can be set in preamble by using
customfont option in the document class. Then the custom font can
be loaded in preamble.tex in the line:

\ifsetCustomFont
 \RequirePackage{Your_Custom_Font}
\fi

Choosing the bibliography style

PhDThesisPSnPDF currently supports two styles authoryear and
numbered (default). Citation style has to be set. You can also
specify custombib style and customise the bibliography.

	authoryear: For author-year citation eg., Krishna (2013)

	numbered: (Default Option) For numbered and sorted citation e.g.,
[1,5,2]

	custombib: Define your own bibliography style in the
preamble.tex file.

\RequirePackage[square, sort, numbers, authoryear]{natbib}

	(Overview of Bibtex-Styles with
preview)[http://nodonn.tipido.net/bibstyle.php?]

	If you would like to use biblatex instead of natbib. Pass the option
custombib in the documentclass. In the preamble.tex file,
edit the custombib section. Make sure you don’t load the natbib
package and you can specify the layout of your references in
thesis.tex in the reference section. If you are using biber
as backend, run
pdflatex thesis.tex >> biber thesis >> pdflatex thesis.tex >> biber thesis >> pdflatex thesis.tex.
If you are using the default natbib package, don’t worry about this.

Choosing the page style

PhDThesisPSnPDF defines 3 different page styles (header and footer).
The following definition is for twoside layout. To choose a page
style, include it in the documentclass options:
\documentclass[PageStyleI]{PhDThesisPSnPDF}. Alternatively, page
style can be changed by adding \pagestyle{PageStyleI} or
\pagestyle{PageStyleII} in thesis.tex. Note: Using
\pagestyle command will override documentclass options when used
globally.

	default (leave empty): For Page Numbers in Header (Left Even,
Right Odd) and Chapter Name in Header (Right Even) and Section #.
Section Name (Left Odd). Blank Footer.

Header (Even) : 4 Introduction

Header (Odd) : 1.2 Section Name 5

Footer : Empty

	PageStyleI: For Page Numbers in Header (Left Even, Right Odd) and
Chapter Name next to the Page Number on Even Side (Left Even).
Section Number and Section Name and Page Number in Header on Odd Side
(Right Odd). Footer is empty. Layout:

Header (Even) : 4 | Introduction

Header (Odd) : 1.2 Section Name | 5

Footer : Empty

	PageStyleII: Chapter Name on Even Side (Left Even) in Header.
Section Number and Section Name in Header on Odd Side (Right Odd).
Page numbering in footer. Layout:

Header (Even) : Introduction

Header (Odd) : 1.2 Section Name

Footer[centered]: 3

Changing the visual style of chapter headings

The visual style of chapter headings can be modified using the
titlesec package. Edit the following lines in the preamble.tex
file.

\RequirePackage{titlesec}
\newcommand{\PreContentTitleFormat}{\titleformat{\chapter}[display]{\scshape\Large}
{\Large\filleft{\chaptertitlename} \Huge\thechapter}
{1ex}{}
[\vspace{1ex}\titlerule]}
\newcommand{\ContentTitleFormat}{\titleformat{\chapter}[display]{\scshape\huge}
{\Large\filleft{\chaptertitlename} \Huge\thechapter}{1ex}
{\titlerule\vspace{1ex}\filright}
[\vspace{1ex}\titlerule]}
\newcommand{\PostContentTitleFormat}{\PreContentTitleFormat}
\PreContentTitleFormat

Custom settings

	The depth for the table of contents can be set using:

\setcounter{secnumdepth}{3}
\setcounter{tocdepth}{3}

A depth of [3] indicates to a level of \subsubsection or #.#.#.#.
Default set as 2.

	To hide sections from appearing in TOC use:
\tochide\section{Section name} in your TeX files

	Define custom caption style for figure and table caption in
preamble.tex using:

\RequirePackage[small,bf,figurename=Fig.,labelsep=space,tableposition=top]{caption}

	Uncomment the following lines in preamble.tex to force a figure
to be displayed in a particular location. Use H when including
graphics. Note H instead of h.

\usepackage{float}
\restylefloat{figure}

	Bibliography with Author-Year Citation in preamble.tex:

\RequirePackage[round, sort, numbers, authoryear]{natbib}

	Line spacing for the entire document can be specified in
preamble.tex. Uncomment the line spacing you prefer. e.g.,

Nomenclature definition

	To use nomenclature in your chapters:

\nomenclature[g-pi]{π}{ $\simeq 3.14\ldots$}

The sort keys have prefix. In this case a prefix of g is used to
denote Greek Symbols, followed by -pi or -sort_key. Use a
- to separate sort key from the prefixes. The standard prefixes
defined in this class are:

	A or a: Roman Symbols

	G or g: Greek Symbols

	Z or z: Acronyms/Abbreviations

	R or r: Superscripts

	S or s: Subscripts

	X or x: Other Symbols

	You can change the Title of Nomenclature to Notations or Symbols in
the preamble.tex using:

\renewcommand\nomname{Symbols}

TexStudio’s default compile option doesn’t include nomenclature, to
compile your document with the nomenclature, do the following:

Options >> Configure TexStudio >> Build >> User Commands >> add user command

In add user command type makenomeclature:makenomenclature on the
left pane and makeindex %.nlo -s nomencl.ist -o %.nls on the
execution side. Now you can run the user defined command
makenomenclature from Tools >> User >> makenomenclature.

Alternatively, you can use the compile-thesis-windows.bat file or
run make on Unix / Linux / MacOS

Git hooks

You rarely want to commit changes to your TeX files which are not
reflected in the PDF included in the repo. You can automate this
process, among other things, with a git hook. Install the hook with
make hooks (or see how to do it in ./hooks/install.sh). Now
every time you commit, if any files affecting your build have changed in
this commit and those changes are more recent than the last modification
of thesis.pdf, the default make target will be run and changes
to thesis.pdf will be git added.

Currently, changes to any tex/pdf/eps/png/cls files are picked up. This
can be changed in ./hooks/pre-commit.

Skip the hook with git commit --no-verify.

bash-only.

General guidelines

	To restrict the length of the figure caption in List of figures use a
[short-title] and {longtitle} for the caption or the section:

`\caption[Caption that you want to appear in TOC]{Actual caption of the figure}`
`\section[short]{title}`

	To exclude sections from being numbered and disable it from appearing
in the Table of Contents use or

	To only exclude it from being listed in the Table of Contents
encapsulate the section command inside the \tochide command.
\tochide{\section{Section_Name}} the section will not appear in
the Table of Contents, but the section will be numbered.

	When including figures in your tex file, it’s a good practice to size
your picture depending on the page size, instead of using absolute
values. In the following example 0.75\textwidth refers to picture
width being set to 75% of the text width.

\includegraphics[width=0.75\textwidth]{minion}

	Use a - to separate sort key from the prefixes, eg., g-pi
denotes the Greek symbol pi.

web-website-python

Purpose

This template is a Flask [https://flask.palletsprojects.com/en/1.1.x/] based Web Template that can be customized from two basic layouts and many available frontend templates.
It contains all the code, necessary for project setup and automatic deployment on a Linux server. It also provides a GitHub Workflow for automatic CSS linting on push using
Stylelint [https://stylelint.io/].

Design

The whole template is designed to be as customizable as possible. Note that all templates could be customized
with a full featured Frontend template setup during the template creation process. However, if you don´t like the offered templates or simply want to create your own frontend,
you can create your template with only a minimal frontend.
You can choose from two main options:

The basic setup

The basic theme is designed to provide only minimal code needed for getting started: Thus it comes
with only minimal HTML/CSS/JS code (but you can initialize it with a full featured frontend, if you want to) and basic Flask configuration.
However, it contains all the code needed for automatic deployment on a Linux server and adheres to the cookietemple project structure standards.

├── .bandit.yml
├── CODE_OF_CONDUCT.rst
├── cookietemple.cfg
├── .cookietemple.yml
├── deployment_scripts
│ ├── exploding_springfield
│ ├── exploding_springfield.service
│ ├── README.md
│ └── setup.sh
├── Dockerfile
├── docs
│ ├── authors.rst
│ ├── code_of_conduct.rst
│ ├── conf.py
│ ├── index.rst
│ ├── installation.rst
│ ├── make.bat
│ ├── Makefile
│ ├── readme.rst
│ ├── requirements.txt
│ ├── _static
│ │ └── custom_cookietemple.css
│ └── usage.rst
├── .editorconfig
├── exploding_springfield
│ ├── app.py
│ ├── basic
│ │ ├── __init__.py
│ │ └── routes.py
│ ├── config.py
│ ├── errors
│ │ ├── handlers.py
│ │ └── __init__.py
│ ├── __init__.py
│ ├── server.py
│ ├── static
│ │ └── assets
│ │ ├── css
│ │ │ └── min_css.css
│ │ ├── images
│ │ │ └── gitkeep
│ │ ├── js
│ │ │ └── min_jss.js
│ │ ├── sass
│ │ │ ├── base
│ │ │ │ └── gitkeep
│ │ │ ├── components
│ │ │ │ └── gitkeep
│ │ │ ├── layout
│ │ │ │ └── gitkeep
│ │ │ └── libs
│ │ │ └── gitkeep
│ │ └── webfonts
│ │ └── gitkeep
│ └── templates
│ ├── basic_index.html
│ └── errors
│ ├── 400.html
│ ├── 403.html
│ ├── 404.html
│ ├── 410.html
│ ├── 500.html
│ └── error_template.html
├── .github
│ ├── dependabot.yml
│ ├── ISSUE_TEMPLATE
│ │ ├── bug_report.md
│ │ ├── feature_request.md
│ │ └── general_question.md
│ ├── pull_request_template.md
│ ├── release-drafter.yml
│ └── workflows
│ ├── build_package.yml
│ ├── main_master_branch_protection.yml
│ ├── publish_docs.yml
│ ├── release-drafter.yml
│ ├── run_bandit.yml
│ ├── run_codecov.yml
│ ├── run_cookietemple_lint.yml
│ ├── run_css_lint.yml
│ ├── run_flake8_linting.yml
│ ├── run_tox_testsuite.yml
│ └── sync_project.yml
├── .gitignore
├── LICENSE
├── Makefile
├── makefiles
│ ├── Linux.mk
│ └── Windows.mk
├── MANIFEST.in
├── .prettierignore
├── README.rst
├── .readthedocs.yml
├── requirements_dev.txt
├── requirements.txt
├── setup.cfg
├── setup.py
├── .stylelintrc.json
├── tests
│ ├── __init__.py
│ └── test_exploding_springfield.py
└── tox.ini

The advanced setup

The advanced theme comes with a lot more functionality by default (and can also be initialized with a full featured, nice frontend):

	It uses FlaskSQL-Alchemy [https://flask-sqlalchemy.palletsprojects.com/en/2.x/] and FlaskMigrate [https://flask-migrate.readthedocs.io/en/latest/] to setup a SQLite [https://www.sqlite.org/index.html] application for simple User Login.

	It provides translation for German and English using Flask-Babel [https://pythonhosted.org/Flask-Babel/].

	It provides sending mail through Flask-Mail [https://pythonhosted.org/Flask-Mail/].

	It provides error handling through custom error pages.

	Its configured to be automatically deployed in seconds on a Linux server.

	More is WIP (Contributions are welcome).

├── babel.cfg
├── .bandit.yml
├── CODE_OF_CONDUCT.rst
├── cookietemple.cfg
├── .cookietemple.yml
├── deployment_scripts
│ ├── exploding_springfield
│ ├── exploding_springfield.service
│ ├── README.md
│ └── setup.sh
├── Dockerfile
├── docs
│ ├── authors.rst
│ ├── code_of_conduct.rst
│ ├── conf.py
│ ├── index.rst
│ ├── installation.rst
│ ├── make.bat
│ ├── Makefile
│ ├── readme.rst
│ ├── requirements.txt
│ ├── _static
│ │ └── custom_cookietemple.css
│ └── usage.rst
├── .editorconfig
├── exploding_springfield
│ ├── app.py
│ ├── auth
│ │ ├── forms
│ │ │ ├── __init__.py
│ │ │ ├── login_form.py
│ │ │ └── register_form.py
│ │ ├── __init__.py
│ │ └── routes.py
│ ├── config.py
│ ├── errors
│ │ ├── handlers.py
│ │ └── __init__.py
│ ├── __init__.py
│ ├── main
│ │ ├── __init__.py
│ │ └── routes.py
│ ├── models
│ │ ├── __init__.py
│ │ └── users.py
│ ├── server.py
│ ├── services
│ │ └── __init__.py
│ ├── static
│ │ ├── assets
│ │ │ ├── css
│ │ │ │ └── min_css.css
│ │ │ ├── images
│ │ │ │ └── gitkeep
│ │ │ ├── js
│ │ │ │ └── min_jss.js
│ │ │ ├── sass
│ │ │ │ ├── base
│ │ │ │ │ └── gitkeep
│ │ │ │ ├── components
│ │ │ │ │ └── gitkeep
│ │ │ │ ├── layout
│ │ │ │ │ └── gitkeep
│ │ │ │ └── libs
│ │ │ │ └── gitkeep
│ │ │ └── webfonts
│ │ │ └── gitkeep
│ │ └── mail_stub.conf
│ ├── templates
│ │ ├── auth
│ │ │ ├── login.html
│ │ │ └── register.html
│ │ ├── base.html
│ │ ├── errors
│ │ │ ├── 400.html
│ │ │ ├── 403.html
│ │ │ ├── 404.html
│ │ │ ├── 410.html
│ │ │ ├── 500.html
│ │ │ └── error_template.html
│ │ └── index.html
│ └── translations
│ └── de
│ └── LC_MESSAGES
│ └── messages.po
├── .github
│ ├── dependabot.yml
│ ├── ISSUE_TEMPLATE
│ │ ├── bug_report.md
│ │ ├── feature_request.md
│ │ └── general_question.md
│ ├── pull_request_template.md
│ ├── release-drafter.yml
│ └── workflows
│ ├── build_package.yml
│ ├── main_master_branch_protection.yml
│ ├── publish_docs.yml
│ ├── release-drafter.yml
│ ├── run_bandit.yml
│ ├── run_codecov.yml
│ ├── run_cookietemple_lint.yml
│ ├── run_css_lint.yml
│ ├── run_flake8_linting.yml
│ ├── run_tox_testsuite.yml
│ └── sync_project.yml
├── .gitignore
├── LICENSE
├── Makefile
├── makefiles
│ ├── Linux.mk
│ └── Windows.mk
├── MANIFEST.in
├── .prettierignore
├── README.rst
├── .readthedocs.yml
├── requirements_dev.txt
├── requirements.txt
├── setup.cfg
├── setup.py
├── .stylelintrc.json
├── tests
│ ├── __init__.py
│ └── test_exploding_springfield.py
└── tox.ini

Included frameworks/libraries

Both templates are based on Flask [https://flask.palletsprojects.com/en/1.1.x/] and, in the case of the advanced layout,
make heavy use of its extensions.

	Flask [https://flask.palletsprojects.com/en/1.1.x/]

	click [https://click.palletsprojects.com/], argparse [https://docs.python.org/3/library/argparse.html] or no command line interface

	pytest [https://docs.pytest.org/en/latest/] or unittest [https://docs.python.org/3/library/unittest.html] as testing frameworks

	Preconfigured tox [https://tox.readthedocs.io/en/latest/] to run pytest matrices with different Python environments

	Preconfigured readthedocs [https://readthedocs.org/]

	Eleven Github workflows:

	publish_docs.yml, which builds and publishes the readthedocs documentation.

	build_package.yml, which builds the web-template package.

	run_flake8_linting.yml, which runs flake8 [https://flake8.pycqa.org/en/latest/] linting.

	run_tox_testsuite.yml, which runs the tox testing suite.

	run_css_lint.yml, which runs Stylelint [https://stylelint.io/] CSS linting.

	run_codecov, apply codecov to your project/PRs in your project and create automatically a report with the details at codecov.io [https://codecov.io]

	run_bandit, run bandit [https://github.com/PyCQA/bandit] to discover security issues in your python code

	main_master_branch_protection: Please read main_master_branch_protection workflow.

	release-drafter.yml: Please read release drafter workflow.

	run_cookietemple_lint.yml, which runs cookietemple lint on the project.

	sync_project.yml, which syncs the project to the most recent cookietemple template version

We highly recommend to use click (if commandline interface is required) together with pytest.

The advanced template therefore uses some more packages including:

	FlaskSQL-Alchemy [https://flask-sqlalchemy.palletsprojects.com/en/2.x/]

	Flask-Migrate [https://flask-migrate.readthedocs.io/en/latest/]

	Flask-Babel [https://pythonhosted.org/Flask-Babel/] for translations

	Flask-Mail [https://pythonhosted.org/Flask-Mail/] for mail

	Flask-Bootstrap [https://pythonhosted.org/Flask-Bootstrap/] for basic login page styling

	Flask-Login [https://flask-login.readthedocs.io/en/latest/] for login session management

	Flask-wtf [https://flask-wtf.readthedocs.io/en/stable/] for the login forms

Usage

The basic template usage

The generated flask web project can be installed using:

$ make install

or alternatively:

$ python setup.py install

Your package is then installed globally (or in your virtual environment) on your machine and can be called from your favorite shell:

$ <<your_project_name>>

Other make targets include:

$ make clean

which removes all build files:

$ make dist

which builds source and wheel packages, which can then be used for a PyPi release using:

$ make release

All possible Makefile commands can be viewed using:

$ make help

Another possibility is to simply run:

$ export FLASK_APP = path/to/your/app.py
$ flask run

Note that, if your current directory contains your app.py file, you do not need to set the environment variable lika above!

The advanced template usage

Using the advanced template, you have to consider a few more steps in order to make it work properly:

	You can install the project just like described above via $ make install.

	Now, you have to setup and initialize your SQLite database file using $ make init_db. This step is needed otherwise your app won’t work!

	In order to make your translations working, we need to update and compile the recent translations
Therefore $ flask translate update and then $ flask translate compile. Note that you have to $ export FLASK_APP=your/path/to/app.py
if not already done. Then, again, run $ make install to pick up your translations into your actual build.

	Now, fire up $ <<your_project_name>> and see your project setup working.

A quick note on translations: Your advanced template comes with a basic translation setup for German and English translation.
As your project grows, you may need to add new translations. This can be easily done using the provided cli-commands by the template:

1. If you want to add a new language: Use $ flask translate init <<my_new_language>>. Note that my new language must be a valid language literal like
en for english.

	$ flask translate update to update all language repositories

	Now you can update your translations in your/path/to/translations/yourlanguage/LC_MESSAGES/messages.po.

	$ flask translate compile to compile all language repositories

Note that you need to run $ make install each time after updating and compiling your new translations in order for them to take effect. However, this is not
necessary, if you start your application via $ flask run.

Automatic Deployment

IMPORTANT: Note that the following is written for a server running Ubuntu 18.04 LTS where Python2 is still the default. If you are using Ubuntu 20 (or similar), you can replace
pip3 with pip and python3 with python.

Both templates are ready for deployment using nginx and gunicorn and are therefore shipped with a setup script path/to/your/project/deployment_scripts/setup.sh.
There are a few requirements needed in order to deploy:

	You need a registered Domain from your preferred DNS-Provider like Namecheap [https://www.namecheap.com/].

	You need a Linux server, like a droplet at DigitalOcean [https://www.digitalocean.com/], in order to deploy your application.

	To start deployment, you have to setup your server initially. You can follow, for example, the steps here [https://www.digitalocean.com/community/tutorials/initial-server-setup-with-ubuntu-18-04]
in order to correctly setup your server.

If you meet all the requirements above login (for example via $ ssh yourvmusername@your-servers-IP) into your server:

Now, you need to clone your repository in order to start the deployment process.
So $ git clone <<GITHUB_URL_OF_YOUR_PROJECT>> and cd $ YOUR_PROJECTS_TOP_LEVEL_DIRECTORY.
Now simply run $ source deployment_scripts/setup.sh and the deployment starts. You may be prompted for your password as some commands run need sudo rights.

Important:
Currently, one more step is required to get https redirecting to work properly. This will be included into a script in the future, to automate this process.

	$ sudo vim /etc/nginx/sites-enabled/<<my_project_name>>

	Now, you need to copy the certbot added section from the second server section into the first server section, so copy:
listen 443 ssl; # managed by Certbot
ssl_certificate /etc/letsencrypt/live/<<my_url>>/fullchain.pem; # managed by Certbot
ssl_certificate_key /etc/letsencrypt/live/<<my_url>>/privkey.pem; # managed by Certbot
include /etc/letsencrypt/options-ssl-nginx.conf; # managed by Certbot
ssl_dhparam /etc/letsencrypt/ssl-dhparams.pem; # managed by Certbot

into the first server section after the location and delete it from the second one.

	$ sudo nginx -t

	$ sudo nginx -s reload

	$ sudo systemctl restart <<my_project_name>>

Tip: You can check $ sudo systemctl status <my_project_name> to check for the working state of your gunicorn instance or any errors.

If everything went fine, you should now be able to access your application at your domain.
Note that the setup process also includes HTTP to HTTPS redirecting.

In case of any problems, dont hesitate to drop us a message in our Discord [https://discord.com/channels/708008788505919599/708008788505919602]. or create an issue at our github repo [https://github.com/cookiejar/cookietemple/issues/new/choose]

FAQ

None yet.

Shared FAQ

What are the available domains?

cookietemple currently offers a total of 5 different template domains:

	cli

	lib

	gui

	web

	pub

Note that the lib domain does not offer a Python template. We recommend the usage of the cli-python template which can easily be adapted for such purposes
by removing the boilerplate command line code.

How do I publish my documentation?

cookietemple ships with a full, production ready Read the Docs [https://readthedocs.org/] setup and with a complete gh-pages setup.

Read the Docs

You need to import your documentation [https://docs.readthedocs.io/en/stable/intro/import-guide.html] on Read the Docs website.
Do not forget to sync your account first to see your repository.
Your documentation will then be available on https://repositoryname.readthedocs.io/

Github Pages

Your documentation is automatically pushed to the gh-pages branch. Follow the documentation on
configuring a publishing source for your Github pages site <https://docs.github.com/en/free-pro-team@latest/github/working-with-github-pages/configuring-a-publishing-source-for-your-github-pages-site>`_
and select the gh-pages branch. Your documentation will then be available on ``https://username.github.io/repositoryname.

What is Dependabot and how do I set it up?

Dependabot [https://dependabot.com/] is a service, which (for supported languages) automatically submits pull requests for dependency updates.
cookietemple templates ship with dependabot configurations, if the language is supported by Dependabot.
To enable Dependabot you need to login (with your Github account) and add your repository (or enable Dependabot for all repositories).
Note that you need to do this for every organization separately. Dependabot will then pick up the configuration and start submitting pull requests!

Release Drafter

In Cookietemple 1.3.0, all templates received a new GitHub Action called Release drafter. This replaces the CHANGELOG.rst file of all templates.
Release drafter automatically includes references to all PRs made to the default branch and a description of what this PR was about (basically the PRs title) in a
release draft on GitHub. Per default, the release drafter of cookietemple’s templates has been configured to distinguish between two main categories: Features and Fixes.
Every PR that was made from a branch called either feature/ (for Features) or fix/ (for Fixes) will automatically be grouped into those categories and be labelled
automatically. If no category was found, the changes will be grouped into a common Changes category. See also release drafter workflow .

How do I add a new template?

Please follow Adding new templates.

Github Support

Overview

cookietemple uses GitPython [https://gitpython.readthedocs.io/en/stable/] and PyGithub [https://pygithub.readthedocs.io/en/latest/introduction.html] to automatically create a repository, add, commit and push all files.
Moreover, issue labels, a development and a TEMPLATE branch are created. The TEMPLATE branch is required for Syncing your project to work and should not be touched manually.

Branches

Overview

git branches can be understood as diverging copies of the main line of development and facilitate parallel development.
To learn more about branches read Branches in a Nutshell [https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell] of the Pro Git Book [https://git-scm.com/book].
A simple best practice development workflow follows the pattern that the master/main branch always contains the latest released code.
It should only be touched for new releases. Code on the master/main branch must compile and be as bug free as possible.
Development takes place on the development branch. All in parallel developed features eventually make it into this branch.
The development branch should always compile, but it may contain incomplete features or known bugs.
cookietemple creates a TEMPLATE branch, which is required for Syncing your project to work and should not be touched manually.

Branch protection rules

cookietemple sets several branch protection rules, which enforce a minimum standard of best branch practices.
For more information please read about protected branches [https://help.github.com/en/github/administering-a-repository/about-protected-branches].
The following branch protection rules only apply to the master/main branch:

	Required review for pull requests: A pull request to master/main can only be merged if the code was at least reviewed by one person. If you are developing alone you can merge with your administrator powers.

	Dismiss stale pull request approvals when new commits are pushed.

Github Actions

Overview

Modern development tries to merge new features and bug fixes as soon as possible into the development branch, since big, diverging branches are more likely to lead to merge conflicts.
This practice is known as continuous integration [https://en.wikipedia.org/wiki/Continuous_integration] (CI).
Continuous integration is usually complemented with automated tests and continuous delivery (CD).
All of cookietemple’s templates feature Github Actions [https://github.com/features/actions] as main CI/CD service.
Please read the Github Actions Overview [https://github.com/features/actions] for more information.
On specific conditions (usually push events), the Github Actions workflows are triggered and executed.
The developers should ensure that all workflows always pass before merging, since they ensure that the package still builds and all tests are executed successfully.

main_master_branch_protection workflow

All templates feature main_master_branch_protection workflow.
This workflow runs every time a PR to your projects master or main branch is created. It fails, if the PR to the master/main branch
origins from a branch that does not contain patch or release in its branch name.
If development code is written on a branch called development``and a new release of the project is to be made,
one should create a ``release branch only for this purpose and then merge it into master/main branch.
This ensures that new developments can already be merged into development, while the release is finally prepared.
The patch branch should be used for required hotfixes (checked out directly from master/main branch) because, in the meantime, there might
multiple developments going on at development branch and you dont want to interfere with them.
Pull requests against the master or main branch should not contain any SNAPSHOT versions, since they are only used for development versions.

release drafter workflow

All templates feature release-drafter workflow.
This workflow consists of two parts: Every time a new PR is made, the workflow runs and tries autolabeling the PR either as
feature or bug. Feature PRs introduce new features if the branch name contains “feature”. Bug PRs are PRs that either have a title containing
“fix” or the branch name contains “fix”.
This Action then drafts a new release grouped by the different PR categories and include references and titles to all PRs inclduded in the new release.
One can read more about this at the Release drafter GitHub repo [https://github.com/release-drafter/release-drafter].

sync_project.yml

All templates also feature this workflow. This workflow is used for automatic syncing (if enabled) your project with the latest cookietemple template version.
The workflow is run every night, although this behavior can be customized if desired.
The workflow calls cookietemple sync, which first checks whether a new template version is available and if so it submits a pull request.
For more details please visit Syncing your project.

Secrets

Github secrets are what their name suggests: Encrypted secret values in a repository or an organisation; once they are set their value can be used for sensible data in
a project or an organisation but their raw value can never be seen again even by an administrator (but it can be updated).

Cookietemple uses a secret called CT_SYNC_TOKEN for its syncing feature. This secret is automatically created during the repo creation process, if you choose to create a GitHub repo.
The secret contains your encrypted personal access token as its value. Note that this will have no effect on how to login or any other activity in your project.
If you remove the secret or change its value (even with another personal access token of you) the syncing feature will no longer work.
In case you are creating an organisation repository, the secret will also be stored as a repository secret, only usable for your specific project.

See section below in case your Github repo creation failed during the create process.

Error Handling due to failed Github repository creation

Errors during the create process due to a failed Github repo creation may occur due to a vast amount of reasons:
Some common error sources are:

	You have no active internet connection or your firewall protects you against making calls to external APIs.

2. The Github API service or Github itself is unreachable at the moment, which can happen from time to time. In doubt, make sure to check
the Github status page [https://www.githubstatus.com/].

	A repo with the same name already exists in your account/your organisation.

	Your Github Token/Secret does not have all required permissions (all repository and workflow permissions).

Creation fails, ok: But how can I then access the full features of cookietemple?
You can try to fix the issue (or wait some time on case, for example, when Github is down) and then process to create a Github repository manually.
After this, make sure to create a secret named CT_SYNC_TOKEN with the value of your PAT for your repository. See the Github docs [https://docs.github.com/en/actions/configuring-and-managing-workflows/creating-and-storing-encrypted-secrets]
for more information on how to create a secret.

We’re planning to provide a command like cookietemple config fix-github that tries to create a Github repo, set the secret and all other stuff that is going on during the Github repository creation in the create process in a later version.

Issue labels

cookietemple’s Github support automatically creates issue labels [https://help.github.com/en/github/managing-your-work-on-github/labeling-issues-and-pull-requests].
Currently the following labels are automatically created:
1. dependabot: All templates, which include Dependabot [https://dependabot.com/] support label all Dependabot pull requests with this label.

Contributing

Contributions are welcome and greatly appreciated! Every little bit helps and credit will always be given.
If you have any questions or want to get in touch with the core team feel free to join our Discord server [https://discord.com/invite/PYF8NUk].

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/cookiejar/cookietemple/issues.

If you are reporting a bug, please:

	Use the appropriate issue template.

	Be as detailed as possible. The more time you invest into describing the bug, the more time we save solving them, effectively allowing us to improve cookietemple at a faster pace.

	Be patient. We are passionate, hard workers, but also have demanding full time jobs, which require a lot of our attention.

Fix Bugs

Look through the GitHub issues for bugs. We would appreciate it if you quickly commented on the respective issue and write that you are working on this bug, to minimize the chances of two people working on the same task.

Implement Features

Look through the GitHub issues for features. The same rule also applies to features. Please write if you’re picking up one of the feature suggestions.

Add Templates

If you’re planning to add a new template to cookietemple we highly suggest that you open an issue using the corresponding template and discuss it first with us.

Adding new templates will guide you through the process of adding new templates to cookietemple.

Please ensure that you are following all the guidelines and that your template meets the requirements.

Write Documentation

cookietemple could always use more documentation, whether as part of the official cookietemple docs, in docstrings, or even on the web in blog posts, articles, and such.

Submit Feedback

The best way to send feedback is to file an issue here [https://github.com/cookiejardealer/cookietemple/issues] .

If you are proposing a feature:

	Use the appropriate GitHub issue

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions are welcome :)

Get Started!

Ready to contribute? Here’s how to set up cookietemple for local development.

	Fork the cookietemple repo on GitHub.

	Clone your fork locally

$ git clone git@github.com:your_name_here/cookietemple.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development

$ mkvirtualenv cookietemple
$ cd cookietemple/
$ python setup.py develop

4. Create a branch for local development. Note that you should always start your branch name with either fix or feature so that
the Release Drafter GitHub App will handle your PR right.

$ git checkout -b fix_or_feature/name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass the nox test suite.

$ nox

To get nox (and nox-poetry), just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin fix_or_feature/name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	
If the pull request adds functionality, the docs should be updated.

Put your new functionality into a function with a docstring, and add the feature to the list in README.rst, if it is a major feature.

	The pull request should work for Python 3.7+ and for PyPy. Check your pull request on Github and verify that all checks and GitHub workflows are passing!

Tips

To run a subset of tests:

.. code-block:: console

$ pytest tests/something

Adding new templates

Adding new templates is one of the major improvements and community contributions to cookietemple, which is why we are dedicating a whole section to it.
Please note that creating new templates is a time consuming task. So be prepared to invest a few hours to bring a new template to life.
The integration into cookietemple however, is straightforward if you follow the guide below.
Due to the tight coupling of our templates with all cookietemple commands such as create, list, info, lint and bump-version,
new templates require the modification of several files.

cookietemple uses cookiecutter [https://cookiecutter.readthedocs.io/en/1.7.2/] to create all templates.
You need to familiarize yourself beforehand with cookiecutter to able to write templates, but don’t worry, it’s pretty easy and you usually get by with very few cookiecutter variables.
You can start with your very first cookiecutter template [https://cookiecutter.readthedocs.io/en/1.7.2/first_steps.html] and then simply see how the other existing cookietemple templates are made and copy what you need.

The following sections will line out the requirements for new templates and guide you through the process of adding new templates step by step.
Nevertheless, we strongly encourage you to discuss your proposed template first with us in public via a Github issue.

Template requirements

To keep the standard of our templates high we enforce several standards, to which all templates must adhere.
Exceptions, where applicable, but they would have to be discussed beforehand. Hence, the term should.

	New templates must be novel.
We do not want a second cli-python template, but you are of course always invited to improve it. A new commandline library does not warrant an additional template, but rather modifications of the existing template with cookiecutter if statements.
However, distinct modifications of already existing templates may be eligible. An example would be to add a GUI template for a language, which does not yet have a GUI template.
Templates for domains, which we do not yet cover or additional languages to already existing domains are of course more than welcome.

	All templates should be cutting edge and not be based on technical debt or obscure requirements. Our target audience are enthusiastic open source contributors and not decades old companies stuck with Python 2.7.

	All templates should build as automatically as possible and download all dependencies without manual intervention.

	All templates must have a testing and possibly mocking framework included.

	All templates must provide a readthedocs setup, a README.rst, usage.rst and installation.rst file, a LICENSE, Github issue and pull request templates and a .gitignore file. Moreover, a .dependabot configuration should be present if applicable.
Note that most of these are already included in our common_files and do not need to be rewritten. More on that below.

	All templates must provide a Makefile, which wraps heavily used commands to unify common operations such as installing, testing or distributing a project.

	All templates should have a Dockerfile, which provides an entrypoint for the project.

	All templates must implement all required functionality to allow the application of all commands mentioned above to them, which includes a cookietemple.cfg file, the template being in the available_templates.yml and more.

	All templates must have Github workflows, which at least build the documentation and the project.

	Every template must also have a workflow inside cookietemple, which creates a project from the template with dummy values.

	Your template must support Linux and MacOS. Windows support is optional, but strongly encouraged.

Again, we strongly suggest that new templates are discussed with the core team first.

Step by step guide to adding new templates

Let’s assume that we are planning to add a new commandline Brainfuck [https://en.wikipedia.org/wiki/Brainfuck] template to cookietemple.
We discussed our design at length with the core team and they approved our plan. For the sake of this tutorial we assume that the path / always points to /cookietemple.
Hence, at this level we see cookietemple_cli.py and a folder per CLI command.

	Let’s add our brainfuck template information to /create/templates/available_templates.yml below the cli section.

1cli:
2 brainfuck:
3 name: Brainfuck Commandline Tool
4 handle: cli-brainfuck
5 version: 0.0.1
6 available libraries: none
7 short description: Brainfuck Commandline tool with ANSI coloring
8 long description: Amazing brainfuck tool, which can even show pretty unicorns in the console.
9 Due to ANSI coloring support they can even be pink! Please someone send help.

	
Next, we add our brainfuck template to /create/templates

Note that it should adhere to the standards mentioned above and include all required files. Don’t forget to add a cookietemple.cfg file to facilitate bump-version. See Configuration for details.
It is mandatory to name the top level folder {{ cookiecutter.project_slug }}, which ensures that the project after creation will have a proper name.
Furthermore, the cookiecutter.json file should have at least the following variables:

1{
2"full_name": "Homer Simpson",
3"email": "homer.simpson@posteo.net",
4"project_name": "sample-cli",
5"project_slug": "sample-cli",
6"version": "1.0.0",
7"project_short_description": "Command-line utility to...",
8"github_username": "homer_github"
9}

The file tree of the template should resemble

 1├── cookiecutter.json
 2└── {{ cookiecutter.project_slug }}
 3 ├── docs
 4 │ ├── installation.rst
 5 │ └── usage.rst
 6 ├── .github
 7 │ └── workflows
 8 │ └── build_brainfuck.yml
 9 ├── hello.bf
10 ├── cookietemple.cfg
11 └── README.rst

	
Now it is time to subclass the TemplateCreator to implement all required functions to create our template!

Let’s edit /create/domains/cli_creator.py. Note that for new domains you would simply create a new file called DomainCreator.

In this case we suggest to simply copy the code of an existing Creator and adapt it to the new domain. Your new domain may make use of other creation functions instead of create_template_without_subdomain, if they for example contain subdomains. You can examine create/TemplatorCreator.py to see what’s available. You may also remove functions such as the creation of common files.

If we have any brainfuck specific cookiecutter variables that we need to populate, we may add them to the TemplateStructCli.

Our brainfuck templates does not have them, so we just leave it as is.

For the next step we simply go through the CliCreator class and add our brainfuck template where required. Moreover, we implement a cli_brainfuck_options function, which we use to prompt for template specific cookiecutter variables.

Assuming cli_creator.py already contains a cli-java template

 1@dataclass
 2class TemplateStructCli(CookietempleTemplateStruct):
 3 """
 4 Intended Use: This class holds all attributes specific for CLI projects
 5 """
 6
 7 """______JAVA______"""
 8 main_class_prefix: str = ''
 9
10 """____BRAINFUCK___"""
11
12
13class CliCreator(TemplateCreator):
14
15 def __init__(self):
16 self.cli_struct = TemplateStructCli(domain='cli')
17 super().__init__(self.cli_struct)
18 self.WD = os.path.dirname(__file__)
19 self.WD_Path = Path(self.WD)
20 self.TEMPLATES_CLI_PATH = f'{self.WD_Path.parent}/templates/cli'
21
22 '"" TEMPLATE VERSIONS ""'
23 self.CLI_JAVA_TEMPLATE_VERSION = super().load_version('cli-java')
24 self.CLI_BRAINFUCK_TEMPLATE_VERSION = super().load_version('cli-brainfuck')
25
26 def create_template(self, path: Path, dot_cookietemple: dict or None):
27 """
28 Handles the CLI domain. Prompts the user for the language, general and domain specific options.
29 """
30
31 self.cli_struct.language = cookietemple_questionary_or_dot_cookietemple(function='select',
32 question='Choose the project\'s primary language',
33 choices=['python', 'java', 'brainfuck'],
34 default='python',
35 dot_cookietemple=dot_cookietemple,
36 to_get_property='language')
37
38 # prompt the user to fetch general template configurations
39 super().prompt_general_template_configuration(dot_cookietemple)
40
41 # switch case statement to prompt the user to fetch template specific configurations
42 switcher = {
43 'java': self.cli_java_options,
44 'brainfuck': self.cli_brainfuck_options
45 }
46 switcher.get(self.cli_struct.language)(dot_cookietemple)
47
48 self.cli_struct.is_github_repo, \
49 self.cli_struct.is_repo_private, \
50 self.cli_struct.is_github_orga, \
51 self.cli_struct.github_orga \
52 = prompt_github_repo(dot_cookietemple)
53
54 if self.cli_struct.is_github_orga:
55 self.cli_struct.github_username = self.cli_struct.github_orga
56
57 # create the chosen and configured template
58 super().create_template_without_subdomain(f'{self.TEMPLATES_CLI_PATH}')
59
60 # switch case statement to fetch the template version
61 switcher_version = {
62 'java': self.CLI_JAVA_TEMPLATE_VERSION,
63 'brainfuck': self.CLI_BRAINFUCK_TEMPLATE_VERSION
64 }
65 self.cli_struct.template_version, self.cli_struct.template_handle = switcher_version.get(
66 self.cli_struct.language.lower()), f'cli-{self.cli_struct.language.lower()}'
67
68 super().process_common_operations(path=Path(path).resolve(), domain='cli', language=self.cli_struct.language, dot_cookietemple=dot_cookietemple)
69
70 def cli_python_options(self, dot_cookietemple: dict or None):
71 """ Prompts for cli-python specific options and saves them into the CookietempleTemplateStruct """
72 self.cli_struct.command_line_interface = cookietemple_questionary_or_dot_cookietemple(function='select',
73 question='Choose a command line library',
74 choices=['Click', 'Argparse', 'No command-line interface'],
75 default='Click',
76 dot_cookietemple=dot_cookietemple,
77 to_get_property='command_line_interface')
78 [...]
79
80 def cli_java_options(self, dot_cookietemple: dict or None) -> None:
81 """ Prompts for cli-java specific options and saves them into the CookietempleTemplateStruct """
82 [...]
83
84 def cli_brainfuck_options(self):
85 """ Prompts for cli-brainfuck specific options and saves them into the CookietempleTemplateStruct """
86 pass

	
If a new template were added we would also have to import our new Creator in create/create.py and add the new domain to the domain prompt and the switcher.

However, in this case we can simply skip this step, since cli is already included.

 1def choose_domain(domain: str):
 2 """
 3 Prompts the user for the template domain.
 4 Creates the .cookietemple file.
 5 Prompts the user whether or not to create a Github repository
 6 :param domain: Template domain
 7 """
 8 if not domain:
 9 domain = click.prompt('Choose between the following domains',
10 type=click.Choice(['cli', 'gui', 'web', 'pub']))
11
12 switcher = {
13 'cli': CliCreator,
14 'web': WebCreator,
15 'gui': GuiCreator,
16 'pub': PubCreator
17 }
18
19 creator_obj = switcher.get(domain.lower())()
20 creator_obj.create_template()

	
Linting is up next! We need to ensure that our brainfuck template always adheres to the highest standards! Let’s edit lint/domains/cli.py.

We need to add a new class, which inherits from TemplateLinter and add our linting functions to it.

 1class CliBrainfuckLint(TemplateLinter, metaclass=GetLintingFunctionsMeta):
 2 def __init__(self, path):
 3 super().__init__(path)
 4
 5 def lint(self):
 6 super().lint_project(self, self.methods)
 7
 8 def check_sync_section(self) -> bool:
 9 """
10 Check the sync_files_blacklisted section containing every required file!
11 """
12 config_linter = ConfigLinter(f'{self.path}/cookietemple.cfg', self)
13 result = config_linter.check_section(section_items=config_linter.parser.items('sync_files_blacklisted'), section_name='sync_files_blacklisted',
14 main_linter=self, blacklisted_sync_files=[[('changelog', 'CHANGELOG.rst')], -1],
15 error_code='cli-brainfuck-2', is_sublinter_calling=True)
16 if result:
17 self.passed.append(('cli-brainfuck-2', 'All required sync blacklisted files are configured!'))
18 else:
19 self.failed.append(('cli-brainfuck-2', 'Blacklisted sync files section misses some required files!'))
20 return result
21
22 def brainfuck_files_exist(self) -> None:
23 """
24 Checks a given pipeline directory for required files.
25 Iterates through the templates's directory content and checkmarks files for presence.
26 Files that **must** be present::
27 'hello.bf',
28 Files that *should* be present::
29 '.github/workflows/build_brainfuck.yml',
30 Files that *must not* be present::
31 none
32 Files that *should not* be present::
33 none
34 """
35
36 # NB: Should all be files, not directories
37 # List of lists. Passes if any of the files in the sublist are found.
38 files_fail = [
39 ['hello.bf'],
40]
41 files_warn = [
42 [os.path.join('.github', 'workflows', 'build_brainfuck.yml')],
43]
44
45 # List of strings. Fails / warns if any of the strings exist.
46 files_fail_ifexists = [
47
48]
49 files_warn_ifexists = [
50
51]
52
53 files_exist_linting(self, files_fail, files_fail_ifexists, files_warn, files_warn_ifexists)

We need to ensure that our new linting function is found when linting is applied. Therefore, we turn our eyes to lint/lint.py, import our CliBrainfuckLinter and add it to the switcher.

 1from cookietemple.lint.domains.cli import CliBrainfuckLint
 2
 3switcher = {
 4 'cli-python': CliPythonLint,
 5 'cli-java': CliJavaLint,
 6 'cli-brainfuck': CliBrainfuckLint,
 7 'web-website-python': WebWebsitePythonLint,
 8 'gui-java': GuiJavaLint,
 9 'pub-thesis-latex': PubLatexLint
10}

Our shiny new CliBrainfuckLinter is now ready for action!

	
The only thing left to do now is to add a new Github Actions workflow for our template. Let’s go one level up in the folder tree and create .github/workflows/create_cli_brainfuck.yml.

We want to ensure that if we change something in our template, that it still builds!

 1name: Create cli-brainfuck Template
 2
 3on: [push]
 4
 5jobs:
 6 build:
 7
 8 runs-on: ubuntu-latest
 9 strategy:
10 matrix:
11 python: [3.8, 3.9]
12
13 steps:
14 - uses: actions/checkout@v2
15 name: Check out source-code repository
16
17 - name: Setup Python
18 uses: actions/setup-python@v2.2.2
19 with:
20 python-version: ${{ matrix.python }}
21
22 - name: Install Poetry
23 run: |
24 pip install poetry
25
26 - name: Build cookietemple
27 run: |
28 make install
29
30 - name: Create cli-brainfuck Template
31 run: |
32 echo -e "cli\nbrainfuck\nHomer\nhomer.simpson@hotmail.com\nExplodingSpringfield\ndescription\nhomergithub\nn" | poetry run cookietemple create
33
34 - name: Build Package
35 uses: fabasoad/setup-brainfuck-action@master
36 with:
37 version: 0.1.dev1
38 - name: Hello World
39 run: |
40 brainfucky --file ExplodingSpringfield/hello.bf

We were pleasantly surprised to see that someone already made a Github Action for brainfuck.

	
Finally, we add some documentation to /docs/available_templates.rst and explain the purpose, design and frameworks/libraries.

That’s it! We should now be able to try out your new template using cookietemple create
The template should be creatable, it should automatically lint after the creation and Github support should be enabled as well! If we run cookietemple list
Our new template should show up as well!
I’m sure that you noticed that there’s not actually a brainfuck template in cookietemple (yet!).

To quote our mighty Math professors: ‘We’ll leave this as an exercise to the reader.’

External Python based projects

To use cookietemple in an external Python based project

import cookietemple

FAQ

cookietemple is compound software and due to its complex nature many questions may arise.
This section serves as a collection of frequently asked questions.
If you do not find your answer here you may always join our Discord channel [https://discord.gg/PYF8NUk] and ask for help.
We are happy to include your question here afterwards.

I need help with cookietemple. How can I get in contact with the developers?

You can open an issue [https://github.com/cookiejar/cookietemple/issues] or join our Discord channel [https://discord.gg/PYF8NUk].

I am looking for a template for domain x and language y, but it does not exist yet!

We are always looking to add new templates to cookietemple. Please open an issue [https://github.com/cookiejar/cookietemple/issues] or join our Discord channel [https://discord.gg/PYF8NUk].
Even better if you already have a draft for the template and/or could add it yourself!

Troubleshooting

All currently known issues can be found on our Github issue tracker. If there are any major known issues they will be listed here.

Community

cookietemple is a huge community effort and can only be build with the combined expertise of people from all over the world.

No one knows all languages and ecosystems perfectly and we therefore want to invite everyone to join and contribute to cookietemple.

Please join our Discord Channel [https://discord.gg/PYF8NUk] to discuss all things cookietemple and get help.

Please visit Contributing to learn how you can help and improve cookietemple! The easiest way is to spread the word.

Development Leads

	Lukas Heumos (@zethson Github [https://github.com/zethson/], @Lukas Heumos Twitter [https://twitter.com/LukasHeumos])

	Philipp Ehmele (@imipenem Github [https://github.com/imipenem], @Philipp Ehmele Twitter [https://twitter.com/Farwent_])

Core contributors

None yet. Why not be the first?

Contributors

	Filip Dutescu (@filipdutescu Github [https://github.com/filipdutescu]) (C++ template and more)

	Tobias Langes (@adlanto Github [https://github.com/adlanto]) (Windows support)

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, sex characteristics, gender identity and
expression, level of experience, education, socio-economic status, nationality,
personal appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Maintainers are responsible for clarifying the standards of acceptable behavior
and are expected to take appropriate and fair corrective action in response to
any instances of unacceptable behavior.

Maintainers have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct, or to ban temporarily or permanently any
contributor for other behaviors that they deem inappropriate, threatening,
offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may
be reported by opening an issue. The project team
will review and investigate all complaints, and will respond in a way
that it deems appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an
incident. Further details of specific enforcement policies may be posted
separately.

Project maintainers who do not follow or enforce the Code of Conduct in
good faith may face temporary or permanent repercussions as determined
by other members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 1.4,
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html

Index

cli-java

Purpose

cli-java is a Java [https://www.java.com] based template for designed for command line applications, which require a fast startup time.
Hence, it is based on GraalVM [https://www.graalvm.org/], which allows for the packaging of the application into small, native self-contained executables.
Picocli [https://picocli.info/] is used as main library for the design of the command line interface.

Design

The template is based on a standard Maven directory structure [https://www.baeldung.com/maven-directory-structure]. However, it is using Gradle [https://gradle.org/] as build tool.

├── build.gradle
├── CODE_OF_CONDUCT.rst
├── cookietemple.cfg
├── .cookietemple.yml
├── Dockerfile
├── docs
│ ├── authors.rst
│ ├── code_of_conduct.rst
│ ├── conf.py
│ ├── index.rst
│ ├── installation.rst
│ ├── make.bat
│ ├── Makefile
│ ├── readme.rst
│ ├── requirements.txt
│ ├── _static
│ │ └── custom_cookietemple.css
│ └── usage.rst
├── .editorconfig
├── .gitattributes
├── .github
│ ├── dependabot.yml
│ ├── ISSUE_TEMPLATE
│ │ ├── bug_report.md
│ │ ├── feature_request.md
│ │ └── general_question.md
│ ├── pull_request_template.md
│ ├── release-drafter.yml
│ └── workflows
│ ├── build_deploy.yml
│ ├── main_master_branch_protection.yml
│ ├── publish_docs.yml
│ ├── release-drafter.yml
│ ├── run_checkstyle.yml
│ ├── run_cookietemple_lint.yml
│ ├── run_tests.yml
│ └── sync_project.yml
├── .gitignore
├── gradle
│ └── wrapper
│ ├── gradle-wrapper.jar
│ └── gradle-wrapper.properties
├── gradlew
├── gradlew.bat
├── LICENSE
├── Makefile
├── makefiles
│ ├── Linux.mk
│ └── Windows.mk
├── .prettierignore
├── .project
├── README.rst
├── .readthedocs.yml
├── .settings
│ └── org.eclipse.buildship.core.prefs
├── settings.gradle
└── src
 ├── main
 │ └── java
 │ └── com
 │ └── organization
 │ └── Exploding_springfield.java
 └── test
 └── java
 └── com
 └── organization
 ├── Exploding_springfieldImageTest.java
 ├── Exploding_springfieldTest.java
 └── NativeImageHelper.java

Included frameworks/libraries

	Gradle [https://gradle.org/] as build tool

	GraalVM [https://www.graalvm.org/] as main JDK and virtual layer to allow for native binaries

	GraalVM Native Image [https://www.graalvm.org/docs/reference-manual/native-image/] to build platform dependent self-contained executables

	JUnit 5 [https://junit.org/junit5/] as main testing framework

	Picocli [https://picocli.info/] to implement the command line interface

	Preconfigured readthedocs [https://readthedocs.org/]

	Seven Github workflows:

	build_docs.yml, which builds the Read the Docs documentation.

	build_deploy.yml, which builds the cli-java project into Linux, MacOS and Windows executables. They are deployed as build artifacts.

	run_checkstyle.yml, which runs checkstyle [https://checkstyle.sourceforge.io/] linting using Google’s ruleset.

	run_tests.yml, which runs all JUnit tests.

	main_master_branch_protection: Please read main_master_branch_protection workflow.

	release-drafter.yml: Please read release drafter workflow.

	run_cookietemple_lint.yml, which runs cookietemple lint on the project.

	sync_project.yml, which syncs the project to the most recent cookietemple template version

Usage

cli-java requires you to have Gradle [https://gradle.org/], GraalVM [https://www.graalvm.org/] and
GraalVM Native Image [https://www.graalvm.org/docs/reference-manual/native-image/] installed.
Please follow the instructions on the respective websites to install them. Ensure that GraalVM is the default JDK by running java –version

A platform dependent executable (of the current running operating system!) can then be build by invoking:

make binary

or alternatively:

gradle build

Your platform dependent executable can then be found in the folder build/native-image.

Alternatively you can directly build and run your binary by invoking:

make run

All tests can be run by:

make test

Other make targets include:

make clean

which removes all build files:

make dist

All possible Makefile commands can be viewed using:

make help

FAQ

Can I use cli-java without GraalVM?

cli-java is purposefully designed with GraalVM and native images in mind. We advise against using it without GraalVM.

How can I access the build artifacts?

Go to the Github Actions tab, select the build_deploy workflow and there you can find the artifacts.
Note that the workflow must have completed successfully for all operating systems.

cli-python

Purpose

cli-python is a Python [https://www.python.org/] based template designed for command line applications,
but it may also be easily used as standard Python package without any command line interface. It is an improved version of cookiecutter-hypermodern-python [https://github.com/cjolowicz/cookiecutter-hypermodern-python].

Design

The Python package is based on a standard poetry structure [https://python-poetry.org/] with a corresponding pyproject.toml and poetry.lock file.

├── AUTHORS.rst
├── .bandit.yml
├── codecov.yml
├── CODE_OF_CONDUCT.rst
├── cookietemple.cfg
├── .cookietemple.yml
├── .darglint
├── Dockerfile
├── docs
│ ├── authors.rst
│ ├── code_of_conduct.rst
│ ├── conf.py
│ ├── index.rst
│ ├── installation.rst
│ ├── make.bat
│ ├── Makefile
│ ├── readme.rst
│ ├── reference.rst
│ ├── requirements.txt
│ ├── _static
│ │ └── custom_cookietemple.css
│ └── usage.rst
├── .editorconfig
├── .flake8
├── .gitattributes
├── .github
│ ├── dependabot.yml
│ ├── ISSUE_TEMPLATE
│ │ ├── bug_report.md
│ │ ├── feature_request.md
│ │ └── general_question.md
│ ├── labels.yml
│ ├── pull_request_template.md
│ ├── release-drafter.yml
│ └── workflows
│ ├── build_package.yml
│ ├── check_no_SNAPSHOT_master.yml
│ ├── check_patch_release_master_only.yml
│ ├── constraints.txt
│ ├── labeler.yml
│ ├── publish_docs.yml
│ ├── publish_package.yml
│ ├── run_cookietemple_lint.yml
│ ├── run_tests.yml
│ ├── release-drafter.yml
│ └── sync_project.yml
├── .gitignore
├── LICENSE
├── Makefile
├── makefiles
│ ├── Linux.mk
│ └── Windows.mk
├── mypy.ini
├── noxfile.py
├── poetry.lock
├── .pre-commit-config.yaml
├── .prettierignore
├── pyproject.toml
├── README.rst
├── .readthedocs.yml
│ └── project_name
│ ├── __init__.py
│ ├── __main__.py
│ └── py.typed
└── tests
 ├── __init__.py
 └── test_main.py

Included frameworks/libraries

	poetry [https://python-poetry.org/] for code packaging

	click [https://click.palletsprojects.com/] or no command line interface

	pytest [https://docs.pytest.org/en/latest/] or unittest [https://docs.python.org/3/library/unittest.html] as testing frameworks

	nox [https://nox.thea.codes/en/stable/] to automate testing in multiple Python environments

	pre-commit [https://pre-commit.com/] to run various code style linters and to enforce a common style

	Preconfigured readthedocs [https://readthedocs.org/]

	Eight Github workflows:

	build_docs.yml, which builds the readthedocs documentation.

	build_package.yml, which builds the cli-python package.

	publish_package.yml, which publishes the package to PyPi. Note that it only runs on Github release and requires PyPi secrets to be set up.

	run_tests, apply codecov to your project/PRs in your project and create automatically a report with the details at codecov.io [https://codecov.io]

	main_master_branch_protection: Please read main_master_branch_protection workflow.

	release-drafter.yml: Please read release drafter workflow.

	run_cookietemple_lint.yml, which runs cookietemple lint on the project.

	sync_project.yml, which syncs the project to the most recent cookietemple template version

We highly recommend to use click (if commandline interface is required) together with pytest.

Usage

The package requires the installation of poetry, nox and nox-poetry.
Then generated cli-python project can be installed using:

make install

or alternatively:

poetry install

Your package is then installed in a custom virtual environment on your machine and can be called from your favorite shell:

<<your_project_name>>

Run all pre-commit tests with:

make test-all

Ensure that you have nox nox-poetry installed (as specified in the .github/workflows/constraints.txt file.
Other make targets include:

make clean

which removes all build files:

make build

which builds source and wheel packages, which can then be used for a PyPi release using:

make release

All possible Makefile commands can be viewed using:

make help

FAQ

Do I need a command line interface?

No you do not need a command line interface. cli-python can also be used as a Python package.
Simply remove all command line related code. At some point we will try to offer a version without a command line interface.

flake8 and darglint are very slow

This is a known issue with Google and Numpy doc styles: https://github.com/terrencepreilly/darglint/issues/186
If this is a concern to you feel free to remove darglint.

gui-java

Purpose

gui-java is a modular JavaFX [https://openjfx.io/] based template to build cross platform Desktop graphical user interfaces (GUIs).

It uses Apache Maven [https://maven.apache.org/] to compile the package and Packaging using warp to distribute binaries containing a Java Runtime Environment (JRE).

Design

The template follows the standard Maven directory layout [https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html].
Therefore, all dependencies are defined in the pom.xml file, the tool source code is in src/java and the tests in src/test.

Please be aware that gui-java is a modular Java 11+ project, which requires a few modifications to distribute and build JavaFX applications.
As a result, binaries are a lot smaller. Assuming that your organization is called cookiejardealer, the file tree looks as follows:

├── CODE_OF_CONDUCT.rst
├── cookietemple.cfg
├── .cookietemple.yml
├── Dockerfile
├── docs
│ ├── authors.rst
│ ├── code_of_conduct.rst
│ ├── conf.py
│ ├── index.rst
│ ├── installation.rst
│ ├── make.bat
│ ├── Makefile
│ ├── readme.rst
│ ├── requirements.txt
│ ├── _static
│ │ └── custom_cookietemple.css
│ └── usage.rst
├── .editorconfig
├── .github
│ ├── dependabot.yml
│ ├── ISSUE_TEMPLATE
│ │ ├── bug_report.md
│ │ ├── feature_request.md
│ │ └── general_question.md
│ ├── pull_request_template.md
│ ├── release-drafter.yml
│ └── workflows
│ ├── compile_package.yml
│ ├── main_master_branch_protection.yml
│ ├── publish_docs.yml
│ ├── release-drafter.yml
│ ├── run_cookietemple_lint.yml
│ ├── run_java_linting.yml
│ ├── run_tests.yml
│ └── sync_project.yml
├── .gitignore
├── LICENSE
├── Makefile
├── makefiles
│ ├── Linux.mk
│ └── Windows.mk
├── pom.xml
├── .prettierignore
├── README.rst
├── .readthedocs.yml
└── src
 ├── main
 │ ├── java
 │ │ ├── module-info.java
 │ │ └── org
 │ │ └── organization
 │ │ ├── FXMLController.java
 │ │ └── MainApp.java
 │ └── resources
 │ └── org
 │ └── organization
 │ ├── scene.fxml
 │ └── styles.css
 └── test
 └── java
 └── org
 └── organization
 ├── SimpleClickableButtonTest.java
 └── SimpleJUnit5ExampleTest.java

Included frameworks/libraries

	Apache Maven [https://maven.apache.org/] to build and solve dependencies

	JavaFX (14) [https://openjfx.io/] to build a graphical user interface

	JavaFX Maven plugin [https://github.com/openjfx/javafx-maven-plugin] to build a modular package with a JRE

	Packaging using warp to create a single, distributable, platform specific binary

	JUnit 5 [https://junit.org/junit5/] for unit tests

	TestFX [https://github.com/TestFX/TestFX] for JavaFX GUI tests

	Preconfigured readthedocs [https://readthedocs.org/]

	Eight Github workflows:

	build_docs.yml, which builds the readthedocs documentation.

	compile_package.yml, which compiles the gui-java project.

	run_java_linting.yml, which runs checkstyle [https://checkstyle.sourceforge.io/] linting using Google’s ruleset.

	run_tests.yml, which runs the Unit tests. Note that this workflow is currently disabled, since GUI unittests are not possible using Github Actions.

	run_codecov, apply codecov to your project/PRs in your project and create automatically a report with the details at codecov.io [https://codecov.io]

	main_master_branch_protection: Please read main_master_branch_protection workflow.

	release-drafter.yml: Please read release drafter workflow. 8. run_cookietemple_lint.yml, which runs cookietemple lint on the project.

	sync_project.yml, which syncs the project to the most recent cookietemple template version.

Usage

The usage of gui-java is primarily Makefile based. Please be aware that you need Apache Maven [https://maven.apache.org/] and Java 11+ installed.

All (Maven) commands are wrapped into Make commands, but can of course also be called directly:

The generated gui-java project can be installed using:

make install

Other make targets include:

make clean

which removes all build files:

make dist

which runs jlink to build the gui-java project with a custom platform dependent JRE.
Be aware, that this results in six folders. The executable binary can be found in the target/bin folder and is called launcher.

If you want to package the resulting custom JRE together with the launcher and all other required files (aka the six folders), then run the:

make binary

goal. make binary calls the make dist goal and then packages the files into a single, platform dependent executable using Packaging using warp.
This executable can then be easily distributed.

Tests can be run via:

make test

All possible Makefile commands can be viewed using:

make help

FAQ

None yet.

lib-cpp

Purpose

A template for modern C++ projects - both executables and libraries - using CMake, Clang-Format, CI, unit testing and more, with support for downstream inclusion.

Design

The template is inspired by several others (mainly TheLartians’ [https://github.com/TheLartians/ModernCppStarter] and Jason Turner’s <https://github.com/lefticus/cpp_starter_project>). It is using CMake [https://cmake.org/] as its build system.

├── .clang-format
├── .clang-tidy
├── cmake
│ ├── CompilerWarnings.cmake
│ ├── Conan.cmake
│ ├── Doxygen.cmake
│ ├── exploding-springfieldConfig.cmake.in
│ ├── SourcesAndHeaders.cmake
│ ├── StandardSettings.cmake
│ ├── StaticAnalyzers.cmake
│ ├── Utils.cmake
│ ├── Vcpkg.cmake
│ └── version.hpp.in
├── CMakeLists.txt
├── codecov.yaml
├── CODE_OF_CONDUCT.rst
├── CONTRIBUTING.rst
├── cookietemple.cfg
├── .cookietemple.yml
├── Dockerfile
├── docs
│ ├── authors.rst
│ ├── code_of_conduct.rst
│ ├── conf.py
│ ├── index.rst
│ ├── installation.rst
│ ├── make.bat
│ ├── Makefile
│ ├── readme.rst
│ ├── requirements.txt
│ ├── _static
│ │ └── custom_cookietemple.css
│ └── usage.rst
├── .editorconfig
├── .github
│ ├── ISSUE_TEMPLATE
│ │ ├── bug_report.md
│ │ ├── feature_request.md
│ │ └── general_question.md
│ ├── pull_request_template.md
│ ├── release-drafter.yml
│ └── workflows
│ ├── build_linux.yml
│ ├── build_macos.yml
│ ├── build_windows.yml
│ ├── main_master_branch_protection.yml
│ ├── publish_docs.yml
│ ├── release-drafter.yml
│ ├── release.yml
│ ├── run_cookietemple_lint.yml
│ └── sync_project.yml
├── .gitignore
├── include
│ └── exploding-springfield
│ └── tmp.hpp
├── LICENSE
├── Makefile
├── makefiles
│ ├── Linux.mk
│ └── Windows.mk
├── .prettierignore
├── README.rst
├── .readthedocs.yml
├── src
│ └── tmp.cpp
└── test
 ├── CMakeLists.txt
 └── src
 └── tmp_test.cpp

Included frameworks/libraries

	Modern CMake configuration and project

	An example of a Clang-Format config, inspired from the base
Google model, with minor tweaks.

	Static analyzers integration, with Clang-Tidy and Cppcheck, the former being the default option

	Doxygen support, through the ENABLE_DOXYGEN option, which can enable if desired_config

	Unit testing support, through GoogleTest (with an option to enable GoogleMock) or Catch2

	Code coverage, enabled by using the ENABLE_CODE_COVERAGE option, through Codecov CI integration

	Package manager support, with Conan and Vcpkg, through their respective options

	CI workflows for Windows, Linux and MacOS using GitHub Actions, making use of the caching features, to ensure minimum run time

	Options to build as a header-only library or executable, not just a
static or shared library

	CCache integration, for speeding up build times

Usage

Installing

To install an already built project, you need to run the install
target with CMake. For example:

cmake --build build --target install --config Release

a more general syntax for that command is:
cmake --build <build_directory> --target install --config <desired_config>

Building the project

To build the project, all you need to do, after
correctly `installing the project <README.rst#Installing>`_, is run
a similar CMake routine to the the one below:

mkdir build/ && cd build/
cmake .. -DCMAKE_INSTALL_PREFIX=/absolute/path/to/custom/install/directory
cmake --build . --target install

Note: The custom CMAKE_INSTALL_PREFIX can be omitted if you
wish to install in the default install
location [https://cmake.org/cmake/help/latest/module/GNUInstallDirs.html].

More options that you can set for the project can be found in the
cmake/StandardSettings.cmake
file. For certain options additional
configuration may be needed in their respective *.cmake files (i.e.
Conan needs the CONAN_REQUIRES and might need the CONAN_OPTIONS
to be setup for it work correctly; the two are set in the
cmake/Conan.cmake file).

Generating the documentation

In order to generate documentation for the project, you need to
configure the build to use Doxygen. This is easily done, by modifying
the workflow shown above as follows:

mkdir build/ && cd build/
cmake .. -D<project_name>_ENABLE_DOXYGEN=1 -DCMAKE_INSTALL_PREFIX=/absolute/path/to/custom/install/directory
cmake --build . --target doxygen-docs

Note: This will generate a docs\/ directory in
the **project’s root directory*.*

Running tests

By default, the template uses Google
Test [https://github.com/google/googletest/] for unit testing. Unit
testing can be disabled in the options, by setting the
ENABLE_UNIT_TESTING (from
cmake/StandardSettings.cmake) to be
false. To run the tests, simply use CTest, from the build directory,
passing the desire configuration for which to run tests for. An example
of this procedure is:

cd build # if not in the build directory already
ctest -C Release # or `ctest -C Debug` or any other configuration you wish to test

you can also run tests with the `-VV` flag for a more verbose output (i.e.
#GoogleTest output as well)

FAQ

None yet.

pub-thesis-latex

Purpose

pub-thesis is a latex based template designed for University theses. It is especially suited for Bachelor-, Master theses and dissertations.

The CUED [https://github.com/kks32/phd-thesis-template] PhD thesis template served as basis for this template.

Design

pub-thesis is a modular latex template, which is reflected in the folder structure. The main tex files are thesis.tex and thesis-info.tex.

thesis-info.tex mostly defines general information such as name, degree, university etc and thesis.tex includes all other tex files such as abstracts, chapters etc.

The tex files for these chapters are found in their respective subfolders.

All figures go inside the Figs subfolder and all references should be included in References/references.bib.

├── Abstract
│ └── abstract.tex
├── Acknowledgement
│ └── acknowledgement.tex
├── Appendix1
│ └── appendix1.tex
├── Chapter1
│ └── chapter1.tex
├── Chapter2
│ ├── chapter2.tex
│ └── Figs
│ ├── Raster
│ │ ├── minion.png
│ │ ├── TomandJerry.png
│ │ └── WallE.png
│ └── Vector
│ ├── minion.eps
│ ├── TomandJerry.eps
│ └── WallE.eps
├── Chapter3
│ └── chapter3.tex
├── compile-thesis.sh
├── compile-thesis-windows.bat
├── cookietemple.cfg
├── .cookietemple.yml
├── Declaration
│ └── declaration.tex
├── Dedication
│ └── dedication.tex
├── Dockerfile
├── Figs
│ ├── CollegeShields
│ │ ├── Downing.eps
│ │ ├── Downing.pdf
│ │ ├── Fitzwilliam.eps
│ │ ├── Fitzwilliam.pdf
│ │ ├── FitzwilliamRed.eps
│ │ ├── FitzwilliamRed.pdf
│ │ ├── Gonville_and_Caius.jpg
│ │ ├── Kings.eps
│ │ ├── Kings.pdf
│ │ ├── Licenses.md
│ │ ├── Peterhouse.pdf
│ │ ├── Queens.eps
│ │ ├── Queens.pdf
│ │ ├── src
│ │ │ ├── Downing.svg
│ │ │ ├── Kings.svg
│ │ │ ├── Peterhouse.svg
│ │ │ ├── Queens.svg
│ │ │ └── Trinity.svg
│ │ ├── StJohns.eps
│ │ ├── StJohns.pdf
│ │ ├── Trinity.eps
│ │ └── Trinity.pdf
│ ├── University_Crest.eps
│ ├── University_Crest_Long.eps
│ ├── University_Crest_Long.pdf
│ └── University_Crest.pdf
├── .github
│ └── workflows
│ └── build_thesis.yml
├── .gitignore
├── glyphtounicode.tex
├── hooks
│ ├── install.sh
│ └── pre-commit
├── LICENSE
├── Makefile
├── PhDThesisPSnPDF.cls
├── Preamble
│ └── preamble.tex
├── README.rst
├── References
│ └── references.bib
├── sty
│ └── breakurl.sty
├── thesis-info.tex
├── thesis.pdf
├── thesis.ps
├── thesis.tex
└── Variables.ini

Included frameworks/libraries

	LaTeX, XeLaTeX and LuaLaTeX support

	Draft mode: Draft water mark, timestamp, version numbering and line numbering

	Bibtex [http://www.bibtex.org/Using/] support

	A Github workflow build_thesis.yml, which builds your thesis in a Docker container

Usage

Building your thesis - LaTeX / PDFLaTeX

Using latexmk (Unix/Linux/Windows)

This template supports latexmk. To generate DVI, PS and PDF run

latexmk -dvi -ps -pdf thesis.tex

Using the make file (Unix/Linux)

The template supports PDF, DVI and PS formats. All three formats can be
generated with the provided Makefile.

To build the PDF version of your thesis, run:

make

This build procedure uses pdflatex with bibtex and will produce
thesis.pdf. To use pdflatex with biblatex, you should run:

make BIB_STRATEGY=biblatex

To use XeLaTeX, you should run:

make BUILD_STRATEGY=xelatex

or with biblatex

make BUILD_STRATEGY=xelatex BIB_STRATEGY=biblatex

To use LuaLaTeX, you should run:

make BUILD_STRATEGY=lualatex

or with biblatex

make BUILD_STRATEGY=lualatex BIB_STRATEGY=biblatex

To produce DVI and PS versions of your document, you should run:

make BUILD_STRATEGY=latex

This will use the latex command to build the document and will
produce thesis.dvi, thesis.ps and thesis.pdf documents. You
will need psutils installed

Clean unwanted files

To clean unwanted clutter (all LaTeX auto-generated files), run:

make clean

Note: the Makefile itself is take from and maintained at
here [http://code.google.com/p/latex-makefile/].

Shell script for PDFLaTeX (Unix/Linux)

Usage: sh ./compile-thesis.sh [OPTIONS] [filename]

[option] compile: Compiles the PhD Thesis

[option] clean: removes temporary files - no filename required

Using the batch file on Windows OS (PDFLaTeX)

	Open command prompt and navigate to the directory with the tex file.
Run:

compile-thesis-windows.bat.

	Alternatively, double click on compile-thesis-windows.bat

Building your thesis - XeLaTeX

Using latexmk (Unix/Linux/Windows)

This template supports XeLaTeX compilation chain. To generate PDF
run

latexmk -xelatex thesis.tex
makeindex thesis.nlo -s nomencl.ist -o thesis.nls
latexmk -xelatex -g thesis.tex

Building your thesis - LuaLaTeX

Using latexmk (Unix/Linux/Windows)

This template supports LuaLaTeX compilation chain. To generate PDF
run

latexmk -pdflatex=lualatex -pdf thesis.tex

Usage details

Thesis information such as title, author, year, degree, etc., and other
meta-data can be modified in thesis-info.tex

Class options

The class file, PhDThesisPSnPDF, is based on the standard book
class

It supports the following custom options in the documentclass in
thesis.tex:

(Usage \documentclass[a4paper,11pt,print]{PhDThesisPSnPDF})

	a4paper (default as per the University guidelines) or
a5paper: Paper size

	11pt or 12pt: The University of Cambridge guidelines
recommend using a minimum font size of 11pt (12pt is preferred) and
10pt for footnotes. This template also supports 10pt.

	oneside or twoside (default): This is especially useful for
printing double side (twoside) or single side.

	print: Supports Print and Online Version with different page
margins and hyperlink styles. Use print in the options to
activate Print Version with appropriate margins and page layout and
view styles. Leaving the options field blank will activate Online
version.

	custommargin: You can alter the margin dimension for both print
and online version by using the keyword custommargin in the
options. Then you can define the dimensions of the margin in the
preamble.tex file:

\ifsetCustomMargin
 \RequirePackage[left=37mm,right=30mm,top=35mm,bottom=30mm]{geometry}
 \setFancyHdr
\fi

\setFancyHdr should be called when using custom margins for
proper header/footer dimensions

\ifsetMargin is deprecated, please use \ifsetCustomMargin
instead.

	index: Including this option builds the index, which is placed at
the end of the thesis.

Instructions on how to use the index can be found
here [http://en.wikibooks.org/wiki/LaTeX/Indexing#Using_makeidx].

Note: the package makeidx is used to create the index.

	abstract: This option enables only the thesis title page and the
abstract with title and author to be printed.

	chapter: This option enables only the specified chapter and it’s
references. Useful for review and corrections.

	draft: The default draft mode supports some special features such
as line numbers, images, and water mark with timestamp and custom
text. Position of the text can be modified in preamble.tex.

	draftclassic: This mode is similar to the default draft mode in
the book class. Images are not loaded.

	lineno: Enables pagewise line numbering on the outer edge. You
can switch-off line numbering by specifying nolineno in the
options.

	flushleft: The University recommends using ragged right or flush
left alignment for texts. The reason behind this is left justifying a
text may exclude a certain readers. Dyslexic people find it hard to
read justified text. You can enable raggedright option in the
document class by passing flushleft argument. Default is flush
left and right.

Title page

The front page (title page) resizes to fit your title length. You can
modify the options in thesis-info.tex.

	\subtitle (optional): Adds a subtitle to your thesis.

	\college (optional): This option adds the name of your college on
the bottom left.

If \college is defined, the bottom of the title page will look like
this:

King's College 2014

If \college is undefined or blank, the degreedate will be
centered.

2014

The template offers support to having both the college and university
crests or just one of the crests.

	\collegeshield (optional): Includes college crest in addition to
the university crest. This reformats the front page layout.

Abstract separate

	A separate abstract with the title of the PhD and the candidate name
has to be submitted to the Student Registry. This can be generated
using abstract option in the document class. Ignore subsequent
warnings about skipping sections (if any).

	To generate the separate abstract and the title page, make sure the
following commands are in the preamble section of thesis.tex
file:

\ifdefineAbstract
\includeonly{Abstract/abstract}
\fi

Chapter mode

	The chapter mode allows user to only print specific chapters along
with references. By default, it excludes everything else in the front
matter and appendices. This can done by using chapter option in
the document class in thesis.tex. Ignore subsequent warnings
about skipping sections (if any).

	To generate the separate abstract and the title page, make sure the
following commands are in the preamble section of thesis.tex
file:

\ifdefineChapter
 \includeonly{Chapter3/chapter3}
\fi

Draft

draft adds a watermark draft text with timestamp and version
number at the top or the bottom of the page. Pagewise line numbering is
added on every page. draft settings can be tweaked in the
preamble.tex.

	Use draftclassic in the document class options to use the default
book class draft mode.

	To add figures in draft mode (default enabled), in the preamble set
\setkeys{Gin}{draft=false}. draft=true disables figures

	To change the watermark text

	To change the position of the watermark text. Default watermark
position is top. The location can be changed to (top / bottom)

	To change the draft version. Default draft version is v1.0.

	Watermark grayscale value can be modified. Text grayscale value
(should be between 0-black and 1-white). Default value is 0.75

Choosing the fonts

PhDThesisPSnPDF currently supports three fonts Times,
Fourier and Latin Modern (default).

	times: (The University of Cambridge guidelines recommend using
Times). Specifying times option in the document class will use
mathptpx or Times font with Math Support.

	fourier: fourier font with math support

	default (empty): When no font is specified, Latin Modern is
used as the default font with Math Support.

	customfont: Any custom font can be set in preamble by using
customfont option in the document class. Then the custom font can
be loaded in preamble.tex in the line:

\ifsetCustomFont
 \RequirePackage{Your_Custom_Font}
\fi

Choosing the bibliography style

PhDThesisPSnPDF currently supports two styles authoryear and
numbered (default). Citation style has to be set. You can also
specify custombib style and customise the bibliography.

	authoryear: For author-year citation eg., Krishna (2013)

	numbered: (Default Option) For numbered and sorted citation e.g.,
[1,5,2]

	custombib: Define your own bibliography style in the
preamble.tex file.

\RequirePackage[square, sort, numbers, authoryear]{natbib}

	(Overview of Bibtex-Styles with
preview)[http://nodonn.tipido.net/bibstyle.php?]

	If you would like to use biblatex instead of natbib. Pass the option
custombib in the documentclass. In the preamble.tex file,
edit the custombib section. Make sure you don’t load the natbib
package and you can specify the layout of your references in
thesis.tex in the reference section. If you are using biber
as backend, run
pdflatex thesis.tex >> biber thesis >> pdflatex thesis.tex >> biber thesis >> pdflatex thesis.tex.
If you are using the default natbib package, don’t worry about this.

Choosing the page style

PhDThesisPSnPDF defines 3 different page styles (header and footer).
The following definition is for twoside layout. To choose a page
style, include it in the documentclass options:
\documentclass[PageStyleI]{PhDThesisPSnPDF}. Alternatively, page
style can be changed by adding \pagestyle{PageStyleI} or
\pagestyle{PageStyleII} in thesis.tex. Note: Using
\pagestyle command will override documentclass options when used
globally.

	default (leave empty): For Page Numbers in Header (Left Even,
Right Odd) and Chapter Name in Header (Right Even) and Section #.
Section Name (Left Odd). Blank Footer.

Header (Even) : 4 Introduction

Header (Odd) : 1.2 Section Name 5

Footer : Empty

	PageStyleI: For Page Numbers in Header (Left Even, Right Odd) and
Chapter Name next to the Page Number on Even Side (Left Even).
Section Number and Section Name and Page Number in Header on Odd Side
(Right Odd). Footer is empty. Layout:

Header (Even) : 4 | Introduction

Header (Odd) : 1.2 Section Name | 5

Footer : Empty

	PageStyleII: Chapter Name on Even Side (Left Even) in Header.
Section Number and Section Name in Header on Odd Side (Right Odd).
Page numbering in footer. Layout:

Header (Even) : Introduction

Header (Odd) : 1.2 Section Name

Footer[centered]: 3

Changing the visual style of chapter headings

The visual style of chapter headings can be modified using the
titlesec package. Edit the following lines in the preamble.tex
file.

\RequirePackage{titlesec}
\newcommand{\PreContentTitleFormat}{\titleformat{\chapter}[display]{\scshape\Large}
{\Large\filleft{\chaptertitlename} \Huge\thechapter}
{1ex}{}
[\vspace{1ex}\titlerule]}
\newcommand{\ContentTitleFormat}{\titleformat{\chapter}[display]{\scshape\huge}
{\Large\filleft{\chaptertitlename} \Huge\thechapter}{1ex}
{\titlerule\vspace{1ex}\filright}
[\vspace{1ex}\titlerule]}
\newcommand{\PostContentTitleFormat}{\PreContentTitleFormat}
\PreContentTitleFormat

Custom settings

	The depth for the table of contents can be set using:

\setcounter{secnumdepth}{3}
\setcounter{tocdepth}{3}

A depth of [3] indicates to a level of \subsubsection or #.#.#.#.
Default set as 2.

	To hide sections from appearing in TOC use:
\tochide\section{Section name} in your TeX files

	Define custom caption style for figure and table caption in
preamble.tex using:

\RequirePackage[small,bf,figurename=Fig.,labelsep=space,tableposition=top]{caption}

	Uncomment the following lines in preamble.tex to force a figure
to be displayed in a particular location. Use H when including
graphics. Note H instead of h.

\usepackage{float}
\restylefloat{figure}

	Bibliography with Author-Year Citation in preamble.tex:

\RequirePackage[round, sort, numbers, authoryear]{natbib}

	Line spacing for the entire document can be specified in
preamble.tex. Uncomment the line spacing you prefer. e.g.,

Nomenclature definition

	To use nomenclature in your chapters:

\nomenclature[g-pi]{π}{ $\simeq 3.14\ldots$}

The sort keys have prefix. In this case a prefix of g is used to
denote Greek Symbols, followed by -pi or -sort_key. Use a
- to separate sort key from the prefixes. The standard prefixes
defined in this class are:

	A or a: Roman Symbols

	G or g: Greek Symbols

	Z or z: Acronyms/Abbreviations

	R or r: Superscripts

	S or s: Subscripts

	X or x: Other Symbols

	You can change the Title of Nomenclature to Notations or Symbols in
the preamble.tex using:

\renewcommand\nomname{Symbols}

TexStudio’s default compile option doesn’t include nomenclature, to
compile your document with the nomenclature, do the following:

Options >> Configure TexStudio >> Build >> User Commands >> add user command

In add user command type makenomeclature:makenomenclature on the
left pane and makeindex %.nlo -s nomencl.ist -o %.nls on the
execution side. Now you can run the user defined command
makenomenclature from Tools >> User >> makenomenclature.

Alternatively, you can use the compile-thesis-windows.bat file or
run make on Unix / Linux / MacOS

Git hooks

You rarely want to commit changes to your TeX files which are not
reflected in the PDF included in the repo. You can automate this
process, among other things, with a git hook. Install the hook with
make hooks (or see how to do it in ./hooks/install.sh). Now
every time you commit, if any files affecting your build have changed in
this commit and those changes are more recent than the last modification
of thesis.pdf, the default make target will be run and changes
to thesis.pdf will be git added.

Currently, changes to any tex/pdf/eps/png/cls files are picked up. This
can be changed in ./hooks/pre-commit.

Skip the hook with git commit --no-verify.

bash-only.

General guidelines

	To restrict the length of the figure caption in List of figures use a
[short-title] and {longtitle} for the caption or the section:

`\caption[Caption that you want to appear in TOC]{Actual caption of the figure}`
`\section[short]{title}`

	To exclude sections from being numbered and disable it from appearing
in the Table of Contents use or

	To only exclude it from being listed in the Table of Contents
encapsulate the section command inside the \tochide command.
\tochide{\section{Section_Name}} the section will not appear in
the Table of Contents, but the section will be numbered.

	When including figures in your tex file, it’s a good practice to size
your picture depending on the page size, instead of using absolute
values. In the following example 0.75\textwidth refers to picture
width being set to 75% of the text width.

\includegraphics[width=0.75\textwidth]{minion}

	Use a - to separate sort key from the prefixes, eg., g-pi
denotes the Greek symbol pi.

web-website-python

Purpose

This template is a Flask [https://flask.palletsprojects.com/en/1.1.x/] based Web Template that can be customized from two basic layouts and many available frontend templates.
It contains all the code, necessary for project setup and automatic deployment on a Linux server. It also provides a GitHub Workflow for automatic CSS linting on push using
Stylelint [https://stylelint.io/].

Design

The whole template is designed to be as customizable as possible. Note that all templates could be customized
with a full featured Frontend template setup during the template creation process. However, if you don´t like the offered templates or simply want to create your own frontend,
you can create your template with only a minimal frontend.
You can choose from two main options:

The basic setup

The basic theme is designed to provide only minimal code needed for getting started: Thus it comes
with only minimal HTML/CSS/JS code (but you can initialize it with a full featured frontend, if you want to) and basic Flask configuration.
However, it contains all the code needed for automatic deployment on a Linux server and adheres to the cookietemple project structure standards.

├── .bandit.yml
├── CODE_OF_CONDUCT.rst
├── cookietemple.cfg
├── .cookietemple.yml
├── deployment_scripts
│ ├── exploding_springfield
│ ├── exploding_springfield.service
│ ├── README.md
│ └── setup.sh
├── Dockerfile
├── docs
│ ├── authors.rst
│ ├── code_of_conduct.rst
│ ├── conf.py
│ ├── index.rst
│ ├── installation.rst
│ ├── make.bat
│ ├── Makefile
│ ├── readme.rst
│ ├── requirements.txt
│ ├── _static
│ │ └── custom_cookietemple.css
│ └── usage.rst
├── .editorconfig
├── exploding_springfield
│ ├── app.py
│ ├── basic
│ │ ├── __init__.py
│ │ └── routes.py
│ ├── config.py
│ ├── errors
│ │ ├── handlers.py
│ │ └── __init__.py
│ ├── __init__.py
│ ├── server.py
│ ├── static
│ │ └── assets
│ │ ├── css
│ │ │ └── min_css.css
│ │ ├── images
│ │ │ └── gitkeep
│ │ ├── js
│ │ │ └── min_jss.js
│ │ ├── sass
│ │ │ ├── base
│ │ │ │ └── gitkeep
│ │ │ ├── components
│ │ │ │ └── gitkeep
│ │ │ ├── layout
│ │ │ │ └── gitkeep
│ │ │ └── libs
│ │ │ └── gitkeep
│ │ └── webfonts
│ │ └── gitkeep
│ └── templates
│ ├── basic_index.html
│ └── errors
│ ├── 400.html
│ ├── 403.html
│ ├── 404.html
│ ├── 410.html
│ ├── 500.html
│ └── error_template.html
├── .github
│ ├── dependabot.yml
│ ├── ISSUE_TEMPLATE
│ │ ├── bug_report.md
│ │ ├── feature_request.md
│ │ └── general_question.md
│ ├── pull_request_template.md
│ ├── release-drafter.yml
│ └── workflows
│ ├── build_package.yml
│ ├── main_master_branch_protection.yml
│ ├── publish_docs.yml
│ ├── release-drafter.yml
│ ├── run_bandit.yml
│ ├── run_codecov.yml
│ ├── run_cookietemple_lint.yml
│ ├── run_css_lint.yml
│ ├── run_flake8_linting.yml
│ ├── run_tox_testsuite.yml
│ └── sync_project.yml
├── .gitignore
├── LICENSE
├── Makefile
├── makefiles
│ ├── Linux.mk
│ └── Windows.mk
├── MANIFEST.in
├── .prettierignore
├── README.rst
├── .readthedocs.yml
├── requirements_dev.txt
├── requirements.txt
├── setup.cfg
├── setup.py
├── .stylelintrc.json
├── tests
│ ├── __init__.py
│ └── test_exploding_springfield.py
└── tox.ini

The advanced setup

The advanced theme comes with a lot more functionality by default (and can also be initialized with a full featured, nice frontend):

	It uses FlaskSQL-Alchemy [https://flask-sqlalchemy.palletsprojects.com/en/2.x/] and FlaskMigrate [https://flask-migrate.readthedocs.io/en/latest/] to setup a SQLite [https://www.sqlite.org/index.html] application for simple User Login.

	It provides translation for German and English using Flask-Babel [https://pythonhosted.org/Flask-Babel/].

	It provides sending mail through Flask-Mail [https://pythonhosted.org/Flask-Mail/].

	It provides error handling through custom error pages.

	Its configured to be automatically deployed in seconds on a Linux server.

	More is WIP (Contributions are welcome).

├── babel.cfg
├── .bandit.yml
├── CODE_OF_CONDUCT.rst
├── cookietemple.cfg
├── .cookietemple.yml
├── deployment_scripts
│ ├── exploding_springfield
│ ├── exploding_springfield.service
│ ├── README.md
│ └── setup.sh
├── Dockerfile
├── docs
│ ├── authors.rst
│ ├── code_of_conduct.rst
│ ├── conf.py
│ ├── index.rst
│ ├── installation.rst
│ ├── make.bat
│ ├── Makefile
│ ├── readme.rst
│ ├── requirements.txt
│ ├── _static
│ │ └── custom_cookietemple.css
│ └── usage.rst
├── .editorconfig
├── exploding_springfield
│ ├── app.py
│ ├── auth
│ │ ├── forms
│ │ │ ├── __init__.py
│ │ │ ├── login_form.py
│ │ │ └── register_form.py
│ │ ├── __init__.py
│ │ └── routes.py
│ ├── config.py
│ ├── errors
│ │ ├── handlers.py
│ │ └── __init__.py
│ ├── __init__.py
│ ├── main
│ │ ├── __init__.py
│ │ └── routes.py
│ ├── models
│ │ ├── __init__.py
│ │ └── users.py
│ ├── server.py
│ ├── services
│ │ └── __init__.py
│ ├── static
│ │ ├── assets
│ │ │ ├── css
│ │ │ │ └── min_css.css
│ │ │ ├── images
│ │ │ │ └── gitkeep
│ │ │ ├── js
│ │ │ │ └── min_jss.js
│ │ │ ├── sass
│ │ │ │ ├── base
│ │ │ │ │ └── gitkeep
│ │ │ │ ├── components
│ │ │ │ │ └── gitkeep
│ │ │ │ ├── layout
│ │ │ │ │ └── gitkeep
│ │ │ │ └── libs
│ │ │ │ └── gitkeep
│ │ │ └── webfonts
│ │ │ └── gitkeep
│ │ └── mail_stub.conf
│ ├── templates
│ │ ├── auth
│ │ │ ├── login.html
│ │ │ └── register.html
│ │ ├── base.html
│ │ ├── errors
│ │ │ ├── 400.html
│ │ │ ├── 403.html
│ │ │ ├── 404.html
│ │ │ ├── 410.html
│ │ │ ├── 500.html
│ │ │ └── error_template.html
│ │ └── index.html
│ └── translations
│ └── de
│ └── LC_MESSAGES
│ └── messages.po
├── .github
│ ├── dependabot.yml
│ ├── ISSUE_TEMPLATE
│ │ ├── bug_report.md
│ │ ├── feature_request.md
│ │ └── general_question.md
│ ├── pull_request_template.md
│ ├── release-drafter.yml
│ └── workflows
│ ├── build_package.yml
│ ├── main_master_branch_protection.yml
│ ├── publish_docs.yml
│ ├── release-drafter.yml
│ ├── run_bandit.yml
│ ├── run_codecov.yml
│ ├── run_cookietemple_lint.yml
│ ├── run_css_lint.yml
│ ├── run_flake8_linting.yml
│ ├── run_tox_testsuite.yml
│ └── sync_project.yml
├── .gitignore
├── LICENSE
├── Makefile
├── makefiles
│ ├── Linux.mk
│ └── Windows.mk
├── MANIFEST.in
├── .prettierignore
├── README.rst
├── .readthedocs.yml
├── requirements_dev.txt
├── requirements.txt
├── setup.cfg
├── setup.py
├── .stylelintrc.json
├── tests
│ ├── __init__.py
│ └── test_exploding_springfield.py
└── tox.ini

Included frameworks/libraries

Both templates are based on Flask [https://flask.palletsprojects.com/en/1.1.x/] and, in the case of the advanced layout,
make heavy use of its extensions.

	Flask [https://flask.palletsprojects.com/en/1.1.x/]

	click [https://click.palletsprojects.com/], argparse [https://docs.python.org/3/library/argparse.html] or no command line interface

	pytest [https://docs.pytest.org/en/latest/] or unittest [https://docs.python.org/3/library/unittest.html] as testing frameworks

	Preconfigured tox [https://tox.readthedocs.io/en/latest/] to run pytest matrices with different Python environments

	Preconfigured readthedocs [https://readthedocs.org/]

	Eleven Github workflows:

	publish_docs.yml, which builds and publishes the readthedocs documentation.

	build_package.yml, which builds the web-template package.

	run_flake8_linting.yml, which runs flake8 [https://flake8.pycqa.org/en/latest/] linting.

	run_tox_testsuite.yml, which runs the tox testing suite.

	run_css_lint.yml, which runs Stylelint [https://stylelint.io/] CSS linting.

	run_codecov, apply codecov to your project/PRs in your project and create automatically a report with the details at codecov.io [https://codecov.io]

	run_bandit, run bandit [https://github.com/PyCQA/bandit] to discover security issues in your python code

	main_master_branch_protection: Please read main_master_branch_protection workflow.

	release-drafter.yml: Please read release drafter workflow.

	run_cookietemple_lint.yml, which runs cookietemple lint on the project.

	sync_project.yml, which syncs the project to the most recent cookietemple template version

We highly recommend to use click (if commandline interface is required) together with pytest.

The advanced template therefore uses some more packages including:

	FlaskSQL-Alchemy [https://flask-sqlalchemy.palletsprojects.com/en/2.x/]

	Flask-Migrate [https://flask-migrate.readthedocs.io/en/latest/]

	Flask-Babel [https://pythonhosted.org/Flask-Babel/] for translations

	Flask-Mail [https://pythonhosted.org/Flask-Mail/] for mail

	Flask-Bootstrap [https://pythonhosted.org/Flask-Bootstrap/] for basic login page styling

	Flask-Login [https://flask-login.readthedocs.io/en/latest/] for login session management

	Flask-wtf [https://flask-wtf.readthedocs.io/en/stable/] for the login forms

Usage

The basic template usage

The generated flask web project can be installed using:

$ make install

or alternatively:

$ python setup.py install

Your package is then installed globally (or in your virtual environment) on your machine and can be called from your favorite shell:

$ <<your_project_name>>

Other make targets include:

$ make clean

which removes all build files:

$ make dist

which builds source and wheel packages, which can then be used for a PyPi release using:

$ make release

All possible Makefile commands can be viewed using:

$ make help

Another possibility is to simply run:

$ export FLASK_APP = path/to/your/app.py
$ flask run

Note that, if your current directory contains your app.py file, you do not need to set the environment variable lika above!

The advanced template usage

Using the advanced template, you have to consider a few more steps in order to make it work properly:

	You can install the project just like described above via $ make install.

	Now, you have to setup and initialize your SQLite database file using $ make init_db. This step is needed otherwise your app won’t work!

	In order to make your translations working, we need to update and compile the recent translations
Therefore $ flask translate update and then $ flask translate compile. Note that you have to $ export FLASK_APP=your/path/to/app.py
if not already done. Then, again, run $ make install to pick up your translations into your actual build.

	Now, fire up $ <<your_project_name>> and see your project setup working.

A quick note on translations: Your advanced template comes with a basic translation setup for German and English translation.
As your project grows, you may need to add new translations. This can be easily done using the provided cli-commands by the template:

1. If you want to add a new language: Use $ flask translate init <<my_new_language>>. Note that my new language must be a valid language literal like
en for english.

	$ flask translate update to update all language repositories

	Now you can update your translations in your/path/to/translations/yourlanguage/LC_MESSAGES/messages.po.

	$ flask translate compile to compile all language repositories

Note that you need to run $ make install each time after updating and compiling your new translations in order for them to take effect. However, this is not
necessary, if you start your application via $ flask run.

Automatic Deployment

IMPORTANT: Note that the following is written for a server running Ubuntu 18.04 LTS where Python2 is still the default. If you are using Ubuntu 20 (or similar), you can replace
pip3 with pip and python3 with python.

Both templates are ready for deployment using nginx and gunicorn and are therefore shipped with a setup script path/to/your/project/deployment_scripts/setup.sh.
There are a few requirements needed in order to deploy:

	You need a registered Domain from your preferred DNS-Provider like Namecheap [https://www.namecheap.com/].

	You need a Linux server, like a droplet at DigitalOcean [https://www.digitalocean.com/], in order to deploy your application.

	To start deployment, you have to setup your server initially. You can follow, for example, the steps here [https://www.digitalocean.com/community/tutorials/initial-server-setup-with-ubuntu-18-04]
in order to correctly setup your server.

If you meet all the requirements above login (for example via $ ssh yourvmusername@your-servers-IP) into your server:

Now, you need to clone your repository in order to start the deployment process.
So $ git clone <<GITHUB_URL_OF_YOUR_PROJECT>> and cd $ YOUR_PROJECTS_TOP_LEVEL_DIRECTORY.
Now simply run $ source deployment_scripts/setup.sh and the deployment starts. You may be prompted for your password as some commands run need sudo rights.

Important:
Currently, one more step is required to get https redirecting to work properly. This will be included into a script in the future, to automate this process.

	$ sudo vim /etc/nginx/sites-enabled/<<my_project_name>>

	Now, you need to copy the certbot added section from the second server section into the first server section, so copy:
listen 443 ssl; # managed by Certbot
ssl_certificate /etc/letsencrypt/live/<<my_url>>/fullchain.pem; # managed by Certbot
ssl_certificate_key /etc/letsencrypt/live/<<my_url>>/privkey.pem; # managed by Certbot
include /etc/letsencrypt/options-ssl-nginx.conf; # managed by Certbot
ssl_dhparam /etc/letsencrypt/ssl-dhparams.pem; # managed by Certbot

into the first server section after the location and delete it from the second one.

	$ sudo nginx -t

	$ sudo nginx -s reload

	$ sudo systemctl restart <<my_project_name>>

Tip: You can check $ sudo systemctl status <my_project_name> to check for the working state of your gunicorn instance or any errors.

If everything went fine, you should now be able to access your application at your domain.
Note that the setup process also includes HTTP to HTTPS redirecting.

In case of any problems, dont hesitate to drop us a message in our Discord [https://discord.com/channels/708008788505919599/708008788505919602]. or create an issue at our github repo [https://github.com/cookiejar/cookietemple/issues/new/choose]

FAQ

None yet.

 _images/0aa1382cf22a32ff8b3fba49b26c7854137322ce.gif
(ct_poetry) thelichking@AnotherTuringMachine:~/Desktops il

nav.xhtml

 Table of Contents

 		
 Welcome to cookietemple’s documentation!

 		
 cookietemple overview

 		
 Installing

 		
 config

 		
 list

 		
 info

 		
 create

 		
 lint

 		
 bump-version

 		
 sync

 		
 warp

 		
 upgrade

 		
 Projects using cookietemple

 		
 Contributing

 		
 Authors

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Upgrading cookietemple

 		
 Windows Installation

 		
 Create a project

 		
 Usage

 		
 Flags

 		
 Getting information about available templates

 		
 list

 		
 Usage

 		
 info

 		
 Usage

 		
 Linting your project

 		
 Usage

 		
 Flags

 		
 Linting codes

 		
 General

 		
 cli-python

 		
 cli-java

 		
 lib-cpp

 		
 web-python

 		
 gui-java

 		
 pub-thesis

 		
 Bumping the version of an existing project

 		
 Usage

 		
 Flags

 		
 Configuration

 		
 Syncing your project

 		
 Requirements for sync

 		
 Usage

 		
 Flags

 		
 Configuring sync

 		
 Enable/Disable sync

 		
 Sync level

 		
 Blacklisting files

 		
 Packaging using warp

 		
 Warp setup

 		
 Usage

 		
 Flags

 		
 Configure cookietemple

 		
 Usage

 		
 Flags

 		
 On Github personal access tokens

 		
 Upgrade cookietemple

 		
 Usage

 		
 Available templates

 		
 cli-python

 		
 Purpose

 		
 Design

 		
 Included frameworks/libraries

 		
 Usage

 		
 FAQ

 		
 cli-java

 		
 Purpose

 		
 Design

 		
 Included frameworks/libraries

 		
 Usage

 		
 FAQ

 		
 gui-java

 		
 Purpose

 		
 Design

 		
 Included frameworks/libraries

 		
 Usage

 		
 FAQ

 		
 lib-cpp

 		
 Purpose

 		
 Design

 		
 Included frameworks/libraries

 		
 Usage

 		
 FAQ

 		
 pub-thesis-latex

 		
 Purpose

 		
 Design

 		
 Included frameworks/libraries

 		
 Usage

 		
 web-website-python

 		
 Purpose

 		
 Design

 		
 Included frameworks/libraries

 		
 Usage

 		
 Automatic Deployment

 		
 FAQ

 		
 Shared FAQ

 		
 What are the available domains?

 		
 How do I publish my documentation?

 		
 What is Dependabot and how do I set it up?

 		
 Release Drafter

 		
 How do I add a new template?

 		
 Github Support

 		
 Overview

 		
 Branches

 		
 Overview

 		
 Branch protection rules

 		
 Github Actions

 		
 Overview

 		
 main_master_branch_protection workflow

 		
 release drafter workflow

 		
 sync_project.yml

 		
 Secrets

 		
 Error Handling due to failed Github repository creation

 		
 Issue labels

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Add Templates

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Adding new templates

 		
 Template requirements

 		
 Step by step guide to adding new templates

 		
 External Python based projects

 		
 FAQ

 		
 I need help with cookietemple. How can I get in contact with the developers?

 		
 I am looking for a template for domain x and language y, but it does not exist yet!

 		
 Troubleshooting

 		
 Community

 		
 Development Leads

 		
 Core contributors

 		
 Contributors

 		
 Contributor Covenant Code of Conduct

 		
 Our Pledge

 		
 Our Standards

 		
 Our Responsibilities

 		
 Scope

 		
 Enforcement

 		
 Attribution

_images/4ecf6147badb93846bb5131e3a43993764a10436.gif
(ct_poetry) thelichking@AnotherTuringMachine:~/Desktop/exploding springfields i

_images/53c8ce62460d9d1ab07d15250d73ce1924f07b1d.gif
(ct_poetry) thelichking@AnotherTuringMachine:~/Desktop$

_images/40cd971a48f7f60d29c98014b343f9c64694a198.gif
thelichking@AnotherTuringMachine:~/Desktop/Exploding_springfields I

_images/9d7c0c4518111439527ada0152ee454e0ecb6942.gif
thelichking@AnotherTuringMachine:~/Desktop/Exploding_Springfields

_images/a254e62ce61b9227291223d553dfcf8b638e208c.gif
(ct_poetry) thelichking@AnotherTuringMachine:~/Desktops I

_images/5cb1d3dacf755ebce1068e021fb909553df91f09.png
ZooKIE

_images/af549c1166eb70d106a5ea32ac4204a429403f65.gif
(ct_poetry) thelichking@AnotherTuringMachine:~/Desktop$ [I

_images/bump_version_example.png
zeth@master /tmp> cookietemple bump-version 1.0.0 Exploding Springfield

Run cookietemple --help for an overview of all commands

Changing version number.
Current version is ©.1.0.
New version will be 1.0.9

Updating version number in Exploding Springfield/setup.py
- version='0.1.0",
+ version='1.0.0",

Updating version number in Exploding Springfield/Exploding Springfield/ init .py
- _version_ = '0.1.0'
+ _version = '1.0.0’

Updating version number in Exploding Springfield/.cookietemple.yml
- version: 0.1.0
+ version: 1..0

Staging template.
Committing changes to local git repository.

_images/linting_example.png
Running general linting

Processing. . . 100% 0:00:00
Running cli-java linting
Processing 100% 0:00:00

LINTING RESULTS

[v1 5 tests passed
(&3] 1 tests had warnings
[x] 0 tests failed

Test passed:
https://cookietenple/linting/errors#l : ALl required general files were found!

https://cookietemple/linting/errors#l : File not found check: .travis.yml

Dockerfile check passed
Versions were consistent over all files
AUL required template specific files were found!

/cookietemple/linting/errors#2
https://cookietemple/linting/errors#5
https://cookietemple/linting/errors#l :

Test Warnings:
... ... :70D0 string found in usage.rst: Write your usage documentation here.

http.

_images/list_example.png
All available COOKIETEMPLE templates

Python Commandline Package | cli-python General Python package with command line interface click, argparse 1.0.0
Java Commandline Tool A GraalVM based multiplatform commandline application using Picocli. | picocli 1.0.0
Kotlin Commandline Tool someShortDescription picocli 0.0.1
Python Based Website someShortDescription flask 0.0.1
JavaFX GUI with Java someShortDescription JavaFX 0.0.1
JavaFX GUI with Kotlin someShortDescription JavaFX 0.0.1
Latex Thesis pub-thesis-latex Template for BSc./MSc./PhD/... thesis latex 1.0.0

_images/info_example.png
Python Commandline Package | cli-python | Best practice Python package with optional click, argparse
command line support (click, argparse). Pytest or
unittest are available as testing libraries. The package
can be easily locally installed and distributed
on PyPi.

_images/warp_example.png
zeth@master /tmp> cookietemple warp --input dir hellofx/target/hellofx/ --exec bin/launcher --output java gui.bin

Run cookietemple --help for an overview of all commands

Packaging using warp-packer version: 0.3.0
For more details please visit: https://github.com/dgiagio/warp for more information

Detected linux
/home/zeth/anaconda3/envs/cookietenple/1ib/python3.8/site-packages/cookietemple-0.1.0-py3.8.egg/cookietemple/package dist/warp/linux-x64.warp-packer
is already executable! Will not attempt to change permissions.

Compressing input directory "hellofx/target/hellofx/".
Creating self-contained application binary "java gui.bin"...
ALl done

_static/plus.png

_static/file.png

_static/minus.png

